2-Domination number of generalized Petersen graphs

Let G = ( V , E ) be a graph. A subset S ⊆ V is a k - dominating set of G if each vertex in V - S is adjacent to at least k vertices in S . The k - domination number of G is the cardinality of the smallest k -dominating set of G . In this paper, we shall prove that the 2-domination number of general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Indian Academy of Sciences. Mathematical sciences 2018-04, Vol.128 (2), p.1-12, Article 17
Hauptverfasser: Bakhshesh, Davood, Farshi, Mohammad, Hooshmandasl, Mohammad Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G = ( V , E ) be a graph. A subset S ⊆ V is a k - dominating set of G if each vertex in V - S is adjacent to at least k vertices in S . The k - domination number of G is the cardinality of the smallest k -dominating set of G . In this paper, we shall prove that the 2-domination number of generalized Petersen graphs P ( 5 k + 1 , 2 ) and P ( 5 k + 2 , 2 ) , for k > 0 , is 4 k + 2 and 4 k + 3 , respectively. This proves two conjectures due to Cheng (Ph.D. thesis, National Chiao Tung University, 2013 ). Moreover, we determine the exact 2-domination number of generalized Petersen graphs P (2 k ,  k ) and P ( 5 k + 4 , 3 ) . Furthermore, we give a good lower and upper bounds on the 2-domination number of generalized Petersen graphs P ( 5 k + 1 , 3 ) , P ( 5 k + 2 , 3 ) and P ( 5 k + 3 , 3 ) .
ISSN:0253-4142
0973-7685
DOI:10.1007/s12044-018-0395-2