A Two-Player Zero-sum Game Where Only One Player Observes a Brownian Motion
We study a two-player zero-sum game in continuous time, where the payoff—a running cost—depends on a Brownian motion. This Brownian motion is observed in real time by one of the players. The other one observes only the actions of his/her opponent. We prove that the game has a value and characterize...
Gespeichert in:
Veröffentlicht in: | Dynamic games and applications 2018-06, Vol.8 (2), p.280-314 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a two-player zero-sum game in continuous time, where the payoff—a running cost—depends on a Brownian motion. This Brownian motion is observed in real time by one of the players. The other one observes only the actions of his/her opponent. We prove that the game has a value and characterize it as the largest convex subsolution of a Hamilton–Jacobi equation on the space of probability measures. |
---|---|
ISSN: | 2153-0785 2153-0793 |
DOI: | 10.1007/s13235-017-0219-5 |