A Two-Player Zero-sum Game Where Only One Player Observes a Brownian Motion

We study a two-player zero-sum game in continuous time, where the payoff—a running cost—depends on a Brownian motion. This Brownian motion is observed in real time by one of the players. The other one observes only the actions of his/her opponent. We prove that the game has a value and characterize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dynamic games and applications 2018-06, Vol.8 (2), p.280-314
Hauptverfasser: Gensbittel, Fabien, Rainer, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a two-player zero-sum game in continuous time, where the payoff—a running cost—depends on a Brownian motion. This Brownian motion is observed in real time by one of the players. The other one observes only the actions of his/her opponent. We prove that the game has a value and characterize it as the largest convex subsolution of a Hamilton–Jacobi equation on the space of probability measures.
ISSN:2153-0785
2153-0793
DOI:10.1007/s13235-017-0219-5