Entropy of systems

In this paper we show that any ergodic measure preserving transformation of a standard probability space which is $\text{AT}(n)$ for some positive integer $n$ has zero entropy. We show that for every positive integer $n$ any Bernoulli shift is not $\text{AT}(n)$ . We also give an example of a transf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2018-05, Vol.38 (3), p.1118-1126
1. Verfasser: MUNTEANU, RADU B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we show that any ergodic measure preserving transformation of a standard probability space which is $\text{AT}(n)$ for some positive integer $n$ has zero entropy. We show that for every positive integer $n$ any Bernoulli shift is not $\text{AT}(n)$ . We also give an example of a transformation which has zero entropy but does not have property $\text{AT}(n)$ for any integer $n\geq 1$ .
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2016.52