A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping
The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018-04, Vol.40 (4), p.1-20, Article 239 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Journal of the Brazilian Society of Mechanical Sciences and Engineering |
container_volume | 40 |
creator | Miras, Thomas Camata, José J. Elias, Renato N. Alves, José L. D. Rochinha, Fernando A. Coutinho, Alvaro L. G. A. |
description | The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows. |
doi_str_mv | 10.1007/s40430-018-1147-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2023750057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023750057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b6c798758824db87c6e7889f7947661a456568103b98acdcb9108c61d505e4503</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhYMoWKsP4G7ArdE7SeYny1L8g4IbXQ-TmZua0iZxZqK0IPgOvqFP4pQIrlzde-GcczlfkpxTuKIA4toXUOSQApUppYVIdwfJhErgac5Lehh3LmTKpJDHyYn3K4A8Y5xNko8Z8UEvl-jQkt51Bu3gkNSdI_V6aOz351dXrdAE0rQBnTah6Vry3oQXUjtE4gdXa4P-kqy1WyJxXdB7iSe6tcS65g1bUm2JtroP8SCh2URXwL5v2uVpclTrtcez3zlNnm9vnub36eLx7mE-W6QmZ2VIK25EKQWTMitsJYXhKKQsa1EWgnOqi1iFSwp5VUptrKlKCtJwahkwLBjk0-RizI0NXwf0Qa26wbXxpcogywUDYCKq6KgyrvPeYa1612y02yoKak9ZjZRVpKz2lNUuerLR46O2jRj_kv83_QCRboIr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023750057</pqid></control><display><type>article</type><title>A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping</title><source>SpringerLink Journals</source><creator>Miras, Thomas ; Camata, José J. ; Elias, Renato N. ; Alves, José L. D. ; Rochinha, Fernando A. ; Coutinho, Alvaro L. G. A.</creator><creatorcontrib>Miras, Thomas ; Camata, José J. ; Elias, Renato N. ; Alves, José L. D. ; Rochinha, Fernando A. ; Coutinho, Alvaro L. G. A.</creatorcontrib><description>The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-018-1147-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control ; Computational fluid dynamics ; Computer simulation ; Control theory ; Coupling ; Engineering ; Feedback control ; Finite element method ; Fluid flow ; FPSO ; Free surfaces ; Incompressible flow ; Incompressible fluids ; Mechanical Engineering ; Model testing ; Multiscale analysis ; Rigid-body dynamics ; Technical Paper ; Vortex-induced vibrations</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018-04, Vol.40 (4), p.1-20, Article 239</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b6c798758824db87c6e7889f7947661a456568103b98acdcb9108c61d505e4503</citedby><cites>FETCH-LOGICAL-c359t-b6c798758824db87c6e7889f7947661a456568103b98acdcb9108c61d505e4503</cites><orcidid>0000-0001-8035-9651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-018-1147-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-018-1147-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Miras, Thomas</creatorcontrib><creatorcontrib>Camata, José J.</creatorcontrib><creatorcontrib>Elias, Renato N.</creatorcontrib><creatorcontrib>Alves, José L. D.</creatorcontrib><creatorcontrib>Rochinha, Fernando A.</creatorcontrib><creatorcontrib>Coutinho, Alvaro L. G. A.</creatorcontrib><title>A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows.</description><subject>Adaptive control</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Coupling</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>FPSO</subject><subject>Free surfaces</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Mechanical Engineering</subject><subject>Model testing</subject><subject>Multiscale analysis</subject><subject>Rigid-body dynamics</subject><subject>Technical Paper</subject><subject>Vortex-induced vibrations</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhYMoWKsP4G7ArdE7SeYny1L8g4IbXQ-TmZua0iZxZqK0IPgOvqFP4pQIrlzde-GcczlfkpxTuKIA4toXUOSQApUppYVIdwfJhErgac5Lehh3LmTKpJDHyYn3K4A8Y5xNko8Z8UEvl-jQkt51Bu3gkNSdI_V6aOz351dXrdAE0rQBnTah6Vry3oQXUjtE4gdXa4P-kqy1WyJxXdB7iSe6tcS65g1bUm2JtroP8SCh2URXwL5v2uVpclTrtcez3zlNnm9vnub36eLx7mE-W6QmZ2VIK25EKQWTMitsJYXhKKQsa1EWgnOqi1iFSwp5VUptrKlKCtJwahkwLBjk0-RizI0NXwf0Qa26wbXxpcogywUDYCKq6KgyrvPeYa1612y02yoKak9ZjZRVpKz2lNUuerLR46O2jRj_kv83_QCRboIr</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Miras, Thomas</creator><creator>Camata, José J.</creator><creator>Elias, Renato N.</creator><creator>Alves, José L. D.</creator><creator>Rochinha, Fernando A.</creator><creator>Coutinho, Alvaro L. G. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8035-9651</orcidid></search><sort><creationdate>20180401</creationdate><title>A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping</title><author>Miras, Thomas ; Camata, José J. ; Elias, Renato N. ; Alves, José L. D. ; Rochinha, Fernando A. ; Coutinho, Alvaro L. G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b6c798758824db87c6e7889f7947661a456568103b98acdcb9108c61d505e4503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive control</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Coupling</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>FPSO</topic><topic>Free surfaces</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Mechanical Engineering</topic><topic>Model testing</topic><topic>Multiscale analysis</topic><topic>Rigid-body dynamics</topic><topic>Technical Paper</topic><topic>Vortex-induced vibrations</topic><toplevel>online_resources</toplevel><creatorcontrib>Miras, Thomas</creatorcontrib><creatorcontrib>Camata, José J.</creatorcontrib><creatorcontrib>Elias, Renato N.</creatorcontrib><creatorcontrib>Alves, José L. D.</creatorcontrib><creatorcontrib>Rochinha, Fernando A.</creatorcontrib><creatorcontrib>Coutinho, Alvaro L. G. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miras, Thomas</au><au>Camata, José J.</au><au>Elias, Renato N.</au><au>Alves, José L. D.</au><au>Rochinha, Fernando A.</au><au>Coutinho, Alvaro L. G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>40</volume><issue>4</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>239</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-018-1147-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8035-9651</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1678-5878 |
ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018-04, Vol.40 (4), p.1-20, Article 239 |
issn | 1678-5878 1806-3691 |
language | eng |
recordid | cdi_proquest_journals_2023750057 |
source | SpringerLink Journals |
subjects | Adaptive control Computational fluid dynamics Computer simulation Control theory Coupling Engineering Feedback control Finite element method Fluid flow FPSO Free surfaces Incompressible flow Incompressible fluids Mechanical Engineering Model testing Multiscale analysis Rigid-body dynamics Technical Paper Vortex-induced vibrations |
title | A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20staggered%20procedure%20for%20fluid%E2%80%93object%20interaction%20with%20free%20surfaces,%20large%20rotations%20and%20driven%20by%20adaptive%20time%20stepping&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Miras,%20Thomas&rft.date=2018-04-01&rft.volume=40&rft.issue=4&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=239&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-018-1147-z&rft_dat=%3Cproquest_cross%3E2023750057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023750057&rft_id=info:pmid/&rfr_iscdi=true |