A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping

The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018-04, Vol.40 (4), p.1-20, Article 239
Hauptverfasser: Miras, Thomas, Camata, José J., Elias, Renato N., Alves, José L. D., Rochinha, Fernando A., Coutinho, Alvaro L. G. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 4
container_start_page 1
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 40
creator Miras, Thomas
Camata, José J.
Elias, Renato N.
Alves, José L. D.
Rochinha, Fernando A.
Coutinho, Alvaro L. G. A.
description The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows.
doi_str_mv 10.1007/s40430-018-1147-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2023750057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023750057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b6c798758824db87c6e7889f7947661a456568103b98acdcb9108c61d505e4503</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhYMoWKsP4G7ArdE7SeYny1L8g4IbXQ-TmZua0iZxZqK0IPgOvqFP4pQIrlzde-GcczlfkpxTuKIA4toXUOSQApUppYVIdwfJhErgac5Lehh3LmTKpJDHyYn3K4A8Y5xNko8Z8UEvl-jQkt51Bu3gkNSdI_V6aOz351dXrdAE0rQBnTah6Vry3oQXUjtE4gdXa4P-kqy1WyJxXdB7iSe6tcS65g1bUm2JtroP8SCh2URXwL5v2uVpclTrtcez3zlNnm9vnub36eLx7mE-W6QmZ2VIK25EKQWTMitsJYXhKKQsa1EWgnOqi1iFSwp5VUptrKlKCtJwahkwLBjk0-RizI0NXwf0Qa26wbXxpcogywUDYCKq6KgyrvPeYa1612y02yoKak9ZjZRVpKz2lNUuerLR46O2jRj_kv83_QCRboIr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023750057</pqid></control><display><type>article</type><title>A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping</title><source>SpringerLink Journals</source><creator>Miras, Thomas ; Camata, José J. ; Elias, Renato N. ; Alves, José L. D. ; Rochinha, Fernando A. ; Coutinho, Alvaro L. G. A.</creator><creatorcontrib>Miras, Thomas ; Camata, José J. ; Elias, Renato N. ; Alves, José L. D. ; Rochinha, Fernando A. ; Coutinho, Alvaro L. G. A.</creatorcontrib><description>The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-018-1147-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control ; Computational fluid dynamics ; Computer simulation ; Control theory ; Coupling ; Engineering ; Feedback control ; Finite element method ; Fluid flow ; FPSO ; Free surfaces ; Incompressible flow ; Incompressible fluids ; Mechanical Engineering ; Model testing ; Multiscale analysis ; Rigid-body dynamics ; Technical Paper ; Vortex-induced vibrations</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018-04, Vol.40 (4), p.1-20, Article 239</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b6c798758824db87c6e7889f7947661a456568103b98acdcb9108c61d505e4503</citedby><cites>FETCH-LOGICAL-c359t-b6c798758824db87c6e7889f7947661a456568103b98acdcb9108c61d505e4503</cites><orcidid>0000-0001-8035-9651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-018-1147-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-018-1147-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Miras, Thomas</creatorcontrib><creatorcontrib>Camata, José J.</creatorcontrib><creatorcontrib>Elias, Renato N.</creatorcontrib><creatorcontrib>Alves, José L. D.</creatorcontrib><creatorcontrib>Rochinha, Fernando A.</creatorcontrib><creatorcontrib>Coutinho, Alvaro L. G. A.</creatorcontrib><title>A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows.</description><subject>Adaptive control</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Coupling</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>FPSO</subject><subject>Free surfaces</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Mechanical Engineering</subject><subject>Model testing</subject><subject>Multiscale analysis</subject><subject>Rigid-body dynamics</subject><subject>Technical Paper</subject><subject>Vortex-induced vibrations</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhYMoWKsP4G7ArdE7SeYny1L8g4IbXQ-TmZua0iZxZqK0IPgOvqFP4pQIrlzde-GcczlfkpxTuKIA4toXUOSQApUppYVIdwfJhErgac5Lehh3LmTKpJDHyYn3K4A8Y5xNko8Z8UEvl-jQkt51Bu3gkNSdI_V6aOz351dXrdAE0rQBnTah6Vry3oQXUjtE4gdXa4P-kqy1WyJxXdB7iSe6tcS65g1bUm2JtroP8SCh2URXwL5v2uVpclTrtcez3zlNnm9vnub36eLx7mE-W6QmZ2VIK25EKQWTMitsJYXhKKQsa1EWgnOqi1iFSwp5VUptrKlKCtJwahkwLBjk0-RizI0NXwf0Qa26wbXxpcogywUDYCKq6KgyrvPeYa1612y02yoKak9ZjZRVpKz2lNUuerLR46O2jRj_kv83_QCRboIr</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Miras, Thomas</creator><creator>Camata, José J.</creator><creator>Elias, Renato N.</creator><creator>Alves, José L. D.</creator><creator>Rochinha, Fernando A.</creator><creator>Coutinho, Alvaro L. G. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8035-9651</orcidid></search><sort><creationdate>20180401</creationdate><title>A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping</title><author>Miras, Thomas ; Camata, José J. ; Elias, Renato N. ; Alves, José L. D. ; Rochinha, Fernando A. ; Coutinho, Alvaro L. G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b6c798758824db87c6e7889f7947661a456568103b98acdcb9108c61d505e4503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive control</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Coupling</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>FPSO</topic><topic>Free surfaces</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Mechanical Engineering</topic><topic>Model testing</topic><topic>Multiscale analysis</topic><topic>Rigid-body dynamics</topic><topic>Technical Paper</topic><topic>Vortex-induced vibrations</topic><toplevel>online_resources</toplevel><creatorcontrib>Miras, Thomas</creatorcontrib><creatorcontrib>Camata, José J.</creatorcontrib><creatorcontrib>Elias, Renato N.</creatorcontrib><creatorcontrib>Alves, José L. D.</creatorcontrib><creatorcontrib>Rochinha, Fernando A.</creatorcontrib><creatorcontrib>Coutinho, Alvaro L. G. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miras, Thomas</au><au>Camata, José J.</au><au>Elias, Renato N.</au><au>Alves, José L. D.</au><au>Rochinha, Fernando A.</au><au>Coutinho, Alvaro L. G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>40</volume><issue>4</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>239</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-018-1147-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8035-9651</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018-04, Vol.40 (4), p.1-20, Article 239
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2023750057
source SpringerLink Journals
subjects Adaptive control
Computational fluid dynamics
Computer simulation
Control theory
Coupling
Engineering
Feedback control
Finite element method
Fluid flow
FPSO
Free surfaces
Incompressible flow
Incompressible fluids
Mechanical Engineering
Model testing
Multiscale analysis
Rigid-body dynamics
Technical Paper
Vortex-induced vibrations
title A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20staggered%20procedure%20for%20fluid%E2%80%93object%20interaction%20with%20free%20surfaces,%20large%20rotations%20and%20driven%20by%20adaptive%20time%20stepping&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Miras,%20Thomas&rft.date=2018-04-01&rft.volume=40&rft.issue=4&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=239&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-018-1147-z&rft_dat=%3Cproquest_cross%3E2023750057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023750057&rft_id=info:pmid/&rfr_iscdi=true