A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping
The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018-04, Vol.40 (4), p.1-20, Article 239 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows. |
---|---|
ISSN: | 1678-5878 1806-3691 |
DOI: | 10.1007/s40430-018-1147-z |