Multiple solutions for a class of fractional (p, q)–Laplacian system in R^sup N

In this work, the symmetric mountain pass lemma is employed to establish the existence of infinitely many solutions to the fractional (p, q)-Laplacian system: (-Δ)...u+V 1(x)|u| p-2u=α -1F u(x,u,v)+λb 1(x)|u|m-2u and (-Δ)...v+V 2(x)|v|q-2v=α -1Fv(x,u,v)+μb 22(x)|v|k-2v in RN, where (-Δ)... and (-Δ)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-03, Vol.59 (3)
Hauptverfasser: Chen, Caisheng, Bao, Jinfeng, Song, Hongxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the symmetric mountain pass lemma is employed to establish the existence of infinitely many solutions to the fractional (p, q)-Laplacian system: (-Δ)...u+V 1(x)|u| p-2u=α -1F u(x,u,v)+λb 1(x)|u|m-2u and (-Δ)...v+V 2(x)|v|q-2v=α -1Fv(x,u,v)+μb 22(x)|v|k-2v in RN, where (-Δ)... and (-Δ)... are the fractional p and q-Laplacian operators, respectively, and 0 < s < 1 < q ≤ p, sp < N, p
ISSN:0022-2488
1089-7658