Multiple solutions for a class of fractional (p, q)–Laplacian system in R^sup N
In this work, the symmetric mountain pass lemma is employed to establish the existence of infinitely many solutions to the fractional (p, q)-Laplacian system: (-Δ)...u+V 1(x)|u| p-2u=α -1F u(x,u,v)+λb 1(x)|u|m-2u and (-Δ)...v+V 2(x)|v|q-2v=α -1Fv(x,u,v)+μb 22(x)|v|k-2v in RN, where (-Δ)... and (-Δ)....
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2018-03, Vol.59 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, the symmetric mountain pass lemma is employed to establish the existence of infinitely many solutions to the fractional (p, q)-Laplacian system: (-Δ)...u+V 1(x)|u| p-2u=α -1F u(x,u,v)+λb 1(x)|u|m-2u and (-Δ)...v+V 2(x)|v|q-2v=α -1Fv(x,u,v)+μb 22(x)|v|k-2v in RN, where (-Δ)... and (-Δ)... are the fractional p and q-Laplacian operators, respectively, and 0 < s < 1 < q ≤ p, sp < N, p |
---|---|
ISSN: | 0022-2488 1089-7658 |