Time series copulas for heteroskedastic data

We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2018-04, Vol.33 (3), p.332-354
Hauptverfasser: Loaiza-Maya, Rubén, Smith, Michael S., Maneesoonthorn, Worapree
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 3
container_start_page 332
container_title Journal of applied econometrics (Chichester, England)
container_volume 33
creator Loaiza-Maya, Rubén
Smith, Michael S.
Maneesoonthorn, Worapree
description We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures of volatility dependence, including co-movement and spillover in multivariate series. In general, these depend upon the marginal distributions of the series. Using exchange rate returns, we show that the resulting copula models can capture their marginal distributions more accurately than univariate and multivariate generalized autoregressive conditional heteroskedasticity models, and produce more accurate value-at-risk forecasts.
doi_str_mv 10.1002/jae.2610
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2023521673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26609851</jstor_id><sourcerecordid>26609851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3820-3110eb48fd6d6af22a2541f621d070034bc4f5184917bdb0697fa7968f20477e3</originalsourceid><addsrcrecordid>eNp10E1Lw0AQgOFFFKxV8A8IAS8eTJ2ZzX7kWEr9ouClnpdNsouJqam7KdJ_b0qKN09zeZgZXsauEWYIQA-NdTOSCCdsgpDnKZIQp2wCWvNUkaBzdhFjAwASQE3Y_breuCS6ULuYlN1219qY-C4kH653oYufrrKxr8uksr29ZGfettFdHeeUvT8u14vndPX29LKYr9KSa4KUI4IrMu0rWUnriSyJDL0krEAB8KwoMy9QZzmqoipA5spblUvtCTKlHJ-y23HvNnTfOxd703S78DWcNATEBaFUfFB3oyqHP2Nw3mxDvbFhbxDMoYUZWphDi4GmI_2pW7f_15nX-fLob0bfxL4Lf56khFwL5L9nTGaO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023521673</pqid></control><display><type>article</type><title>Time series copulas for heteroskedastic data</title><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Online Library All Journals</source><creator>Loaiza-Maya, Rubén ; Smith, Michael S. ; Maneesoonthorn, Worapree</creator><creatorcontrib>Loaiza-Maya, Rubén ; Smith, Michael S. ; Maneesoonthorn, Worapree</creatorcontrib><description>We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures of volatility dependence, including co-movement and spillover in multivariate series. In general, these depend upon the marginal distributions of the series. Using exchange rate returns, we show that the resulting copula models can capture their marginal distributions more accurately than univariate and multivariate generalized autoregressive conditional heteroskedasticity models, and produce more accurate value-at-risk forecasts.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2610</identifier><language>eng</language><publisher>Chichester: Wiley (Variant)</publisher><subject>Autoregressive models ; Correlation analysis ; Econometrics ; Foreign exchange rates ; Markov processes ; RESEARCH ARTICLE ; Time series ; Volatility</subject><ispartof>Journal of applied econometrics (Chichester, England), 2018-04, Vol.33 (3), p.332-354</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3820-3110eb48fd6d6af22a2541f621d070034bc4f5184917bdb0697fa7968f20477e3</citedby><cites>FETCH-LOGICAL-c3820-3110eb48fd6d6af22a2541f621d070034bc4f5184917bdb0697fa7968f20477e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26609851$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26609851$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,27922,27923,45572,45573,58015,58248</link.rule.ids></links><search><creatorcontrib>Loaiza-Maya, Rubén</creatorcontrib><creatorcontrib>Smith, Michael S.</creatorcontrib><creatorcontrib>Maneesoonthorn, Worapree</creatorcontrib><title>Time series copulas for heteroskedastic data</title><title>Journal of applied econometrics (Chichester, England)</title><description>We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures of volatility dependence, including co-movement and spillover in multivariate series. In general, these depend upon the marginal distributions of the series. Using exchange rate returns, we show that the resulting copula models can capture their marginal distributions more accurately than univariate and multivariate generalized autoregressive conditional heteroskedasticity models, and produce more accurate value-at-risk forecasts.</description><subject>Autoregressive models</subject><subject>Correlation analysis</subject><subject>Econometrics</subject><subject>Foreign exchange rates</subject><subject>Markov processes</subject><subject>RESEARCH ARTICLE</subject><subject>Time series</subject><subject>Volatility</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQgOFFFKxV8A8IAS8eTJ2ZzX7kWEr9ouClnpdNsouJqam7KdJ_b0qKN09zeZgZXsauEWYIQA-NdTOSCCdsgpDnKZIQp2wCWvNUkaBzdhFjAwASQE3Y_breuCS6ULuYlN1219qY-C4kH653oYufrrKxr8uksr29ZGfettFdHeeUvT8u14vndPX29LKYr9KSa4KUI4IrMu0rWUnriSyJDL0krEAB8KwoMy9QZzmqoipA5spblUvtCTKlHJ-y23HvNnTfOxd703S78DWcNATEBaFUfFB3oyqHP2Nw3mxDvbFhbxDMoYUZWphDi4GmI_2pW7f_15nX-fLob0bfxL4Lf56khFwL5L9nTGaO</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Loaiza-Maya, Rubén</creator><creator>Smith, Michael S.</creator><creator>Maneesoonthorn, Worapree</creator><general>Wiley (Variant)</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201804</creationdate><title>Time series copulas for heteroskedastic data</title><author>Loaiza-Maya, Rubén ; Smith, Michael S. ; Maneesoonthorn, Worapree</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3820-3110eb48fd6d6af22a2541f621d070034bc4f5184917bdb0697fa7968f20477e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autoregressive models</topic><topic>Correlation analysis</topic><topic>Econometrics</topic><topic>Foreign exchange rates</topic><topic>Markov processes</topic><topic>RESEARCH ARTICLE</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loaiza-Maya, Rubén</creatorcontrib><creatorcontrib>Smith, Michael S.</creatorcontrib><creatorcontrib>Maneesoonthorn, Worapree</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loaiza-Maya, Rubén</au><au>Smith, Michael S.</au><au>Maneesoonthorn, Worapree</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time series copulas for heteroskedastic data</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2018-04</date><risdate>2018</risdate><volume>33</volume><issue>3</issue><spage>332</spage><epage>354</epage><pages>332-354</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures of volatility dependence, including co-movement and spillover in multivariate series. In general, these depend upon the marginal distributions of the series. Using exchange rate returns, we show that the resulting copula models can capture their marginal distributions more accurately than univariate and multivariate generalized autoregressive conditional heteroskedasticity models, and produce more accurate value-at-risk forecasts.</abstract><cop>Chichester</cop><pub>Wiley (Variant)</pub><doi>10.1002/jae.2610</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2018-04, Vol.33 (3), p.332-354
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_journals_2023521673
source JSTOR Archive Collection A-Z Listing; Wiley Online Library All Journals
subjects Autoregressive models
Correlation analysis
Econometrics
Foreign exchange rates
Markov processes
RESEARCH ARTICLE
Time series
Volatility
title Time series copulas for heteroskedastic data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20series%20copulas%20for%20heteroskedastic%20data&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Loaiza-Maya,%20Rub%C3%A9n&rft.date=2018-04&rft.volume=33&rft.issue=3&rft.spage=332&rft.epage=354&rft.pages=332-354&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.2610&rft_dat=%3Cjstor_proqu%3E26609851%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023521673&rft_id=info:pmid/&rft_jstor_id=26609851&rfr_iscdi=true