Time series copulas for heteroskedastic data
We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures...
Gespeichert in:
Veröffentlicht in: | Journal of applied econometrics (Chichester, England) England), 2018-04, Vol.33 (3), p.332-354 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 3 |
container_start_page | 332 |
container_title | Journal of applied econometrics (Chichester, England) |
container_volume | 33 |
creator | Loaiza-Maya, Rubén Smith, Michael S. Maneesoonthorn, Worapree |
description | We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures of volatility dependence, including co-movement and spillover in multivariate series. In general, these depend upon the marginal distributions of the series. Using exchange rate returns, we show that the resulting copula models can capture their marginal distributions more accurately than univariate and multivariate generalized autoregressive conditional heteroskedasticity models, and produce more accurate value-at-risk forecasts. |
doi_str_mv | 10.1002/jae.2610 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2023521673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26609851</jstor_id><sourcerecordid>26609851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3820-3110eb48fd6d6af22a2541f621d070034bc4f5184917bdb0697fa7968f20477e3</originalsourceid><addsrcrecordid>eNp10E1Lw0AQgOFFFKxV8A8IAS8eTJ2ZzX7kWEr9ouClnpdNsouJqam7KdJ_b0qKN09zeZgZXsauEWYIQA-NdTOSCCdsgpDnKZIQp2wCWvNUkaBzdhFjAwASQE3Y_breuCS6ULuYlN1219qY-C4kH653oYufrrKxr8uksr29ZGfettFdHeeUvT8u14vndPX29LKYr9KSa4KUI4IrMu0rWUnriSyJDL0krEAB8KwoMy9QZzmqoipA5spblUvtCTKlHJ-y23HvNnTfOxd703S78DWcNATEBaFUfFB3oyqHP2Nw3mxDvbFhbxDMoYUZWphDi4GmI_2pW7f_15nX-fLob0bfxL4Lf56khFwL5L9nTGaO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023521673</pqid></control><display><type>article</type><title>Time series copulas for heteroskedastic data</title><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Online Library All Journals</source><creator>Loaiza-Maya, Rubén ; Smith, Michael S. ; Maneesoonthorn, Worapree</creator><creatorcontrib>Loaiza-Maya, Rubén ; Smith, Michael S. ; Maneesoonthorn, Worapree</creatorcontrib><description>We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures of volatility dependence, including co-movement and spillover in multivariate series. In general, these depend upon the marginal distributions of the series. Using exchange rate returns, we show that the resulting copula models can capture their marginal distributions more accurately than univariate and multivariate generalized autoregressive conditional heteroskedasticity models, and produce more accurate value-at-risk forecasts.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2610</identifier><language>eng</language><publisher>Chichester: Wiley (Variant)</publisher><subject>Autoregressive models ; Correlation analysis ; Econometrics ; Foreign exchange rates ; Markov processes ; RESEARCH ARTICLE ; Time series ; Volatility</subject><ispartof>Journal of applied econometrics (Chichester, England), 2018-04, Vol.33 (3), p.332-354</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3820-3110eb48fd6d6af22a2541f621d070034bc4f5184917bdb0697fa7968f20477e3</citedby><cites>FETCH-LOGICAL-c3820-3110eb48fd6d6af22a2541f621d070034bc4f5184917bdb0697fa7968f20477e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26609851$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26609851$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,27922,27923,45572,45573,58015,58248</link.rule.ids></links><search><creatorcontrib>Loaiza-Maya, Rubén</creatorcontrib><creatorcontrib>Smith, Michael S.</creatorcontrib><creatorcontrib>Maneesoonthorn, Worapree</creatorcontrib><title>Time series copulas for heteroskedastic data</title><title>Journal of applied econometrics (Chichester, England)</title><description>We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures of volatility dependence, including co-movement and spillover in multivariate series. In general, these depend upon the marginal distributions of the series. Using exchange rate returns, we show that the resulting copula models can capture their marginal distributions more accurately than univariate and multivariate generalized autoregressive conditional heteroskedasticity models, and produce more accurate value-at-risk forecasts.</description><subject>Autoregressive models</subject><subject>Correlation analysis</subject><subject>Econometrics</subject><subject>Foreign exchange rates</subject><subject>Markov processes</subject><subject>RESEARCH ARTICLE</subject><subject>Time series</subject><subject>Volatility</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQgOFFFKxV8A8IAS8eTJ2ZzX7kWEr9ouClnpdNsouJqam7KdJ_b0qKN09zeZgZXsauEWYIQA-NdTOSCCdsgpDnKZIQp2wCWvNUkaBzdhFjAwASQE3Y_breuCS6ULuYlN1219qY-C4kH653oYufrrKxr8uksr29ZGfettFdHeeUvT8u14vndPX29LKYr9KSa4KUI4IrMu0rWUnriSyJDL0krEAB8KwoMy9QZzmqoipA5spblUvtCTKlHJ-y23HvNnTfOxd703S78DWcNATEBaFUfFB3oyqHP2Nw3mxDvbFhbxDMoYUZWphDi4GmI_2pW7f_15nX-fLob0bfxL4Lf56khFwL5L9nTGaO</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Loaiza-Maya, Rubén</creator><creator>Smith, Michael S.</creator><creator>Maneesoonthorn, Worapree</creator><general>Wiley (Variant)</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201804</creationdate><title>Time series copulas for heteroskedastic data</title><author>Loaiza-Maya, Rubén ; Smith, Michael S. ; Maneesoonthorn, Worapree</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3820-3110eb48fd6d6af22a2541f621d070034bc4f5184917bdb0697fa7968f20477e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autoregressive models</topic><topic>Correlation analysis</topic><topic>Econometrics</topic><topic>Foreign exchange rates</topic><topic>Markov processes</topic><topic>RESEARCH ARTICLE</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loaiza-Maya, Rubén</creatorcontrib><creatorcontrib>Smith, Michael S.</creatorcontrib><creatorcontrib>Maneesoonthorn, Worapree</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loaiza-Maya, Rubén</au><au>Smith, Michael S.</au><au>Maneesoonthorn, Worapree</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time series copulas for heteroskedastic data</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2018-04</date><risdate>2018</risdate><volume>33</volume><issue>3</issue><spage>332</spage><epage>354</epage><pages>332-354</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures of volatility dependence, including co-movement and spillover in multivariate series. In general, these depend upon the marginal distributions of the series. Using exchange rate returns, we show that the resulting copula models can capture their marginal distributions more accurately than univariate and multivariate generalized autoregressive conditional heteroskedasticity models, and produce more accurate value-at-risk forecasts.</abstract><cop>Chichester</cop><pub>Wiley (Variant)</pub><doi>10.1002/jae.2610</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7252 |
ispartof | Journal of applied econometrics (Chichester, England), 2018-04, Vol.33 (3), p.332-354 |
issn | 0883-7252 1099-1255 |
language | eng |
recordid | cdi_proquest_journals_2023521673 |
source | JSTOR Archive Collection A-Z Listing; Wiley Online Library All Journals |
subjects | Autoregressive models Correlation analysis Econometrics Foreign exchange rates Markov processes RESEARCH ARTICLE Time series Volatility |
title | Time series copulas for heteroskedastic data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20series%20copulas%20for%20heteroskedastic%20data&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Loaiza-Maya,%20Rub%C3%A9n&rft.date=2018-04&rft.volume=33&rft.issue=3&rft.spage=332&rft.epage=354&rft.pages=332-354&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.2610&rft_dat=%3Cjstor_proqu%3E26609851%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023521673&rft_id=info:pmid/&rft_jstor_id=26609851&rfr_iscdi=true |