Time series copulas for heteroskedastic data
We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures...
Gespeichert in:
Veröffentlicht in: | Journal of applied econometrics (Chichester, England) England), 2018-04, Vol.33 (3), p.332-354 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose parametric copulas that capture serial dependence in stationary heteroskedastic time series. We suggest copulas for first-order Markov series, and then extend them to higher orders and multivariate series. We derive the copula of a volatility proxy, based on which we propose newm easures of volatility dependence, including co-movement and spillover in multivariate series. In general, these depend upon the marginal distributions of the series. Using exchange rate returns, we show that the resulting copula models can capture their marginal distributions more accurately than univariate and multivariate generalized autoregressive conditional heteroskedasticity models, and produce more accurate value-at-risk forecasts. |
---|---|
ISSN: | 0883-7252 1099-1255 |
DOI: | 10.1002/jae.2610 |