Runtime Detection Framework for Android Malware
As the number of Android malware has been increased rapidly over the years, various malware detection methods have been proposed so far. Existing methods can be classified into two categories: static analysis-based methods and dynamic analysis-based methods. Both approaches have some limitations: st...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2018-01, Vol.2018 (2018), p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the number of Android malware has been increased rapidly over the years, various malware detection methods have been proposed so far. Existing methods can be classified into two categories: static analysis-based methods and dynamic analysis-based methods. Both approaches have some limitations: static analysis-based methods are relatively easy to be avoided through transformation techniques such as junk instruction insertions, code reordering, and so on. However, dynamic analysis-based methods also have some limitations that analysis overheads are relatively high and kernel modification might be required to extract dynamic features. In this paper, we propose a dynamic analysis framework for Android malware detection that overcomes the aforementioned shortcomings. The framework uses a suffix tree that contains API (Application Programming Interface) subtraces and their probabilistic confidence values that are generated using HMMs (Hidden Markov Model) to reduce the malware detection overhead, and we designed the framework with the client-server architecture since the suffix tree is infeasible to be deployed in mobile devices. In addition, an application rewriting technique is used to trace API invocations without any modifications in the Android kernel. In our experiments, we measured the detection accuracy and the computational overheads to evaluate its effectiveness and efficiency of the proposed framework. |
---|---|
ISSN: | 1574-017X 1875-905X |
DOI: | 10.1155/2018/8094314 |