Resonances for Obstacles in Hyperbolic Space

We consider scattering by star-shaped obstacles in hyperbolic space and show that resonances satisfy a universal bound Im λ ≤ - 1 2 , which is optimal in dimension 2. In odd dimensions we also show that Im λ ≤ - μ ρ for a universal constant μ , where ρ is the radius of a ball containing the obstacle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2018-04, Vol.359 (2), p.699-731
Hauptverfasser: Hintz, Peter, Zworski, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider scattering by star-shaped obstacles in hyperbolic space and show that resonances satisfy a universal bound Im λ ≤ - 1 2 , which is optimal in dimension 2. In odd dimensions we also show that Im λ ≤ - μ ρ for a universal constant μ , where ρ is the radius of a ball containing the obstacle; this gives an improvement for small obstacles. In dimensions 3 and higher the proofs follow the classical vector field approach of Morawetz, while in dimension 2 we obtain our bound by working with spaces coming from general relativity. We also show that in odd dimensions resonances of small obstacles are close, in a suitable sense, to Euclidean resonances.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-017-3051-2