Very Long Baseline Interferometry: Dependencies on Frequency Stability

Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space science reviews 2018-04, Vol.214 (3), p.1-15, Article 66
Hauptverfasser: Nothnagel, Axel, Nilsson, Tobias, Schuh, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 3
container_start_page 1
container_title Space science reviews
container_volume 214
creator Nothnagel, Axel
Nilsson, Tobias
Schuh, Harald
description Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.
doi_str_mv 10.1007/s11214-018-0498-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2022070882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022070882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a5ccbe07fd5f44f3f615057adb5a0fa92fdfb8194401707cd065d262ab5569c03</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwicTbsOrGdcINCoFIlDvxcLSdZV6lap9jpIW9PqiBx4rRaab7ZnWHsGuEWAfRdRBSYccCcQ1bkHE_YDKUWvFBanLIZQJpzlUJ-zi5i3AAcKT1j5ReFIVl1fp082kjb1lOy9D0FR6HbUR-G--SJ9uQb8nVLMel8Ugb6PozrkLz3tmq3bT9csjNnt5GufuecfZbPH4tXvnp7WS4eVrxOUfXcyrquCLRrpMsylzqFEqS2TSUtOFsI17gqxyLLADXougElG6GEraRURQ3pnN1MvvvQjT_E3my6Q_DjSSNACNCQ52JU4aSqQxdjIGf2od3ZMBgEcwxuprrMWJc51mVwZMTExFHr1xT-nP-HfgABo2zk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022070882</pqid></control><display><type>article</type><title>Very Long Baseline Interferometry: Dependencies on Frequency Stability</title><source>SpringerNature Journals</source><creator>Nothnagel, Axel ; Nilsson, Tobias ; Schuh, Harald</creator><creatorcontrib>Nothnagel, Axel ; Nilsson, Tobias ; Schuh, Harald</creatorcontrib><description>Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.</description><identifier>ISSN: 0038-6308</identifier><identifier>EISSN: 1572-9672</identifier><identifier>DOI: 10.1007/s11214-018-0498-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astrophysics and Astroparticles ; Frequency stability ; Frequency standards ; High Performance Clocks with Special Emphasis on Geodesy and Geophysics and Applications to Other Bodies of the Solar System ; Hydrogen ; Hydrogen masers ; Interferometry ; Parameter estimation ; Physics ; Physics and Astronomy ; Planetology ; Radiation ; Radio telescopes ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Synchronism ; Telescopes ; Very long base interferometry</subject><ispartof>Space science reviews, 2018-04, Vol.214 (3), p.1-15, Article 66</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Space Science Reviews is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a5ccbe07fd5f44f3f615057adb5a0fa92fdfb8194401707cd065d262ab5569c03</citedby><cites>FETCH-LOGICAL-c316t-a5ccbe07fd5f44f3f615057adb5a0fa92fdfb8194401707cd065d262ab5569c03</cites><orcidid>0000-0002-1295-9548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11214-018-0498-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11214-018-0498-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nothnagel, Axel</creatorcontrib><creatorcontrib>Nilsson, Tobias</creatorcontrib><creatorcontrib>Schuh, Harald</creatorcontrib><title>Very Long Baseline Interferometry: Dependencies on Frequency Stability</title><title>Space science reviews</title><addtitle>Space Sci Rev</addtitle><description>Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics and Astroparticles</subject><subject>Frequency stability</subject><subject>Frequency standards</subject><subject>High Performance Clocks with Special Emphasis on Geodesy and Geophysics and Applications to Other Bodies of the Solar System</subject><subject>Hydrogen</subject><subject>Hydrogen masers</subject><subject>Interferometry</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planetology</subject><subject>Radiation</subject><subject>Radio telescopes</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Synchronism</subject><subject>Telescopes</subject><subject>Very long base interferometry</subject><issn>0038-6308</issn><issn>1572-9672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwicTbsOrGdcINCoFIlDvxcLSdZV6lap9jpIW9PqiBx4rRaab7ZnWHsGuEWAfRdRBSYccCcQ1bkHE_YDKUWvFBanLIZQJpzlUJ-zi5i3AAcKT1j5ReFIVl1fp082kjb1lOy9D0FR6HbUR-G--SJ9uQb8nVLMel8Ugb6PozrkLz3tmq3bT9csjNnt5GufuecfZbPH4tXvnp7WS4eVrxOUfXcyrquCLRrpMsylzqFEqS2TSUtOFsI17gqxyLLADXougElG6GEraRURQ3pnN1MvvvQjT_E3my6Q_DjSSNACNCQ52JU4aSqQxdjIGf2od3ZMBgEcwxuprrMWJc51mVwZMTExFHr1xT-nP-HfgABo2zk</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Nothnagel, Axel</creator><creator>Nilsson, Tobias</creator><creator>Schuh, Harald</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1295-9548</orcidid></search><sort><creationdate>20180401</creationdate><title>Very Long Baseline Interferometry: Dependencies on Frequency Stability</title><author>Nothnagel, Axel ; Nilsson, Tobias ; Schuh, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a5ccbe07fd5f44f3f615057adb5a0fa92fdfb8194401707cd065d262ab5569c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics and Astroparticles</topic><topic>Frequency stability</topic><topic>Frequency standards</topic><topic>High Performance Clocks with Special Emphasis on Geodesy and Geophysics and Applications to Other Bodies of the Solar System</topic><topic>Hydrogen</topic><topic>Hydrogen masers</topic><topic>Interferometry</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planetology</topic><topic>Radiation</topic><topic>Radio telescopes</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Synchronism</topic><topic>Telescopes</topic><topic>Very long base interferometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nothnagel, Axel</creatorcontrib><creatorcontrib>Nilsson, Tobias</creatorcontrib><creatorcontrib>Schuh, Harald</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Space science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nothnagel, Axel</au><au>Nilsson, Tobias</au><au>Schuh, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very Long Baseline Interferometry: Dependencies on Frequency Stability</atitle><jtitle>Space science reviews</jtitle><stitle>Space Sci Rev</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>214</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>66</artnum><issn>0038-6308</issn><eissn>1572-9672</eissn><abstract>Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11214-018-0498-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1295-9548</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-6308
ispartof Space science reviews, 2018-04, Vol.214 (3), p.1-15, Article 66
issn 0038-6308
1572-9672
language eng
recordid cdi_proquest_journals_2022070882
source SpringerNature Journals
subjects Aerospace Technology and Astronautics
Astrophysics and Astroparticles
Frequency stability
Frequency standards
High Performance Clocks with Special Emphasis on Geodesy and Geophysics and Applications to Other Bodies of the Solar System
Hydrogen
Hydrogen masers
Interferometry
Parameter estimation
Physics
Physics and Astronomy
Planetology
Radiation
Radio telescopes
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Synchronism
Telescopes
Very long base interferometry
title Very Long Baseline Interferometry: Dependencies on Frequency Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20Long%20Baseline%20Interferometry:%20Dependencies%20on%20Frequency%20Stability&rft.jtitle=Space%20science%20reviews&rft.au=Nothnagel,%20Axel&rft.date=2018-04-01&rft.volume=214&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=66&rft.issn=0038-6308&rft.eissn=1572-9672&rft_id=info:doi/10.1007/s11214-018-0498-1&rft_dat=%3Cproquest_cross%3E2022070882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022070882&rft_id=info:pmid/&rfr_iscdi=true