Very Long Baseline Interferometry: Dependencies on Frequency Stability

Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space science reviews 2018-04, Vol.214 (3), p.1-15, Article 66
Hauptverfasser: Nothnagel, Axel, Nilsson, Tobias, Schuh, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.
ISSN:0038-6308
1572-9672
DOI:10.1007/s11214-018-0498-1