Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments

We conducted hydraulic fracturing (HF) experiments on 170 mm cubic granite specimens with a 20 mm diameter central hole to investigate how fluid viscosity affects HF process and crack properties. In experiments using supercritical carbon dioxide (SC‐CO2), liquid carbon dioxide (L‐CO2), water, and vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2016-11, Vol.121 (11), p.8080-8098
Hauptverfasser: Ishida, Tsuyoshi, Chen, Youqing, Bennour, Ziad, Yamashita, Hiroto, Inui, Shuhei, Nagaya, Yuya, Naoi, Makoto, Chen, Qu, Nakayama, Yoshiki, Nagano, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We conducted hydraulic fracturing (HF) experiments on 170 mm cubic granite specimens with a 20 mm diameter central hole to investigate how fluid viscosity affects HF process and crack properties. In experiments using supercritical carbon dioxide (SC‐CO2), liquid carbon dioxide (L‐CO2), water, and viscous oil with viscosity of 0.051–336.6 mPa · s, we compared the results for breakdown pressure, the distribution and fracturing mechanism of acoustic emission, and the microstructure of induced cracks revealed by using an acrylic resin containing a fluorescent compound. Fracturing with low‐viscosity fluid induced three‐dimensionally sinuous cracks with many secondary branches, which seem to be desirable pathways for enhanced geothermal system, shale gas recovery, and other processes. Key Points Fluid viscosity affects HF process and induced crack properties Low‐viscosity fracturing fluid tends to induce sinuous cracks with many branches CO2 fracturing most likely makes pathways favorable for EGS
ISSN:2169-9313
2169-9356
DOI:10.1002/2016JB013365