Bio-inspired design of hierarchical FeP nanostructure arrays for the hydrogen evolution reaction

Hierarchical FeP nanoarray films composed of FeP nanopetals were successfully synthesized via a bio-inspired hydrothermal route followed by phosphorization. Glycerol, as a crystal growth modifier, plays a significant role in controlling the morphology and structure of the FeO(OH) precursor during th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2018-07, Vol.11 (7), p.3537-3547
Hauptverfasser: Yan, Ya, Shi, Xue Rong, Miao, Mao, He, Ting, Dong, Ze Hua, Zhan, Ke, Yang, Jun He, Zhao, Bin, Xia, Bao Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hierarchical FeP nanoarray films composed of FeP nanopetals were successfully synthesized via a bio-inspired hydrothermal route followed by phosphorization. Glycerol, as a crystal growth modifier, plays a significant role in controlling the morphology and structure of the FeO(OH) precursor during the biomineralization process, while the following transfer and pseudomorphic transformation of the FeO(OH) film successfully give rise to the FeP array film. The as-prepared FeP film electrodes exhibit excellent hydrogen evolution reaction (HER) performance over a wide pH range. Theoretical calculations reveal that the mixed P/Fe termination in the FeP film is responsible for the high catalytic activity of the nanostructured electrodes. This new insight will promote further explorations of efficient metal phosphoride-based catalysts for the HER. More importantly, this study bridges the gap between biological and inorganic self-assembling nanosystems and may open up a new avenue for the preparation of functional nanostructures with application in energy devices.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-017-1919-2