Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type

We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric Q m = SO m + 2 / SO m SO 2 . The normal Jacobi operator of Codazzi type implies that the unit normal vector field N becomes A -principal or A -isotropic. Then, according to each case, we g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2018-04, Vol.41 (2), p.945-964
Hauptverfasser: Jeong, Imsoon, Kim, Gyu Jong, Suh, Young Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 964
container_issue 2
container_start_page 945
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 41
creator Jeong, Imsoon
Kim, Gyu Jong
Suh, Young Jin
description We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric Q m = SO m + 2 / SO m SO 2 . The normal Jacobi operator of Codazzi type implies that the unit normal vector field N becomes A -principal or A -isotropic. Then, according to each case, we give a complete classification of Hopf real hypersurfaces in Q m = SO m + 2 / SO m SO 2 with normal Jacobi operator of Codazzi type. The result of the classification is that no such hypersurfaces exist.
doi_str_mv 10.1007/s40840-017-0485-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019742268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019742268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d089ec4c9ac527075998e1c4b94f1a8b3154bec4b4aacad06efe97cf27657f4d3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWGo_wF3AdfQlzSSTpRS1SrEo7TpkMomd0jZjMoO2X29KBVdm8zbn3MBB6JrCLQWQd4lDyYEAlQR4WRB1hgaMlkA4A3GOBkCZIEJCcYlGKa0hv0IwwegALd-d2eDpvnUx9dEb6xJudrhbOTwJ23bjvvFbb-rYWPzVdCv8GuI2Cy_GhqrB86yZLkQcfMZrczg0eJG3rtCFN5vkRr93iJaPD4vJlMzmT8-T-xmxYyo6UkOpnOVWGVswCbJQqnTU8kpxT01ZjWnBqwxU3BhrahDOOyWtZ1IU0vN6PEQ3p902hs_epU6vQx93-UvNgCrJGRNlpuiJsjGkFJ3XbWy2Ju41BX0MqE8BdQ6ojwG1yg47OSmzuw8X_5b_l34AKt1y6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019742268</pqid></control><display><type>article</type><title>Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type</title><source>SpringerLink Journals</source><creator>Jeong, Imsoon ; Kim, Gyu Jong ; Suh, Young Jin</creator><creatorcontrib>Jeong, Imsoon ; Kim, Gyu Jong ; Suh, Young Jin</creatorcontrib><description>We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric Q m = SO m + 2 / SO m SO 2 . The normal Jacobi operator of Codazzi type implies that the unit normal vector field N becomes A -principal or A -isotropic. Then, according to each case, we give a complete classification of Hopf real hypersurfaces in Q m = SO m + 2 / SO m SO 2 with normal Jacobi operator of Codazzi type. The result of the classification is that no such hypersurfaces exist.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-017-0485-9</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Classification ; Geometry ; Mathematics ; Mathematics and Statistics</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2018-04, Vol.41 (2), p.945-964</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017</rights><rights>Bulletin of the Malaysian Mathematical Sciences Society is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d089ec4c9ac527075998e1c4b94f1a8b3154bec4b4aacad06efe97cf27657f4d3</citedby><cites>FETCH-LOGICAL-c316t-d089ec4c9ac527075998e1c4b94f1a8b3154bec4b4aacad06efe97cf27657f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-017-0485-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-017-0485-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jeong, Imsoon</creatorcontrib><creatorcontrib>Kim, Gyu Jong</creatorcontrib><creatorcontrib>Suh, Young Jin</creatorcontrib><title>Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric Q m = SO m + 2 / SO m SO 2 . The normal Jacobi operator of Codazzi type implies that the unit normal vector field N becomes A -principal or A -isotropic. Then, according to each case, we give a complete classification of Hopf real hypersurfaces in Q m = SO m + 2 / SO m SO 2 with normal Jacobi operator of Codazzi type. The result of the classification is that no such hypersurfaces exist.</description><subject>Applications of Mathematics</subject><subject>Classification</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKAzEURYMoWGo_wF3AdfQlzSSTpRS1SrEo7TpkMomd0jZjMoO2X29KBVdm8zbn3MBB6JrCLQWQd4lDyYEAlQR4WRB1hgaMlkA4A3GOBkCZIEJCcYlGKa0hv0IwwegALd-d2eDpvnUx9dEb6xJudrhbOTwJ23bjvvFbb-rYWPzVdCv8GuI2Cy_GhqrB86yZLkQcfMZrczg0eJG3rtCFN5vkRr93iJaPD4vJlMzmT8-T-xmxYyo6UkOpnOVWGVswCbJQqnTU8kpxT01ZjWnBqwxU3BhrahDOOyWtZ1IU0vN6PEQ3p902hs_epU6vQx93-UvNgCrJGRNlpuiJsjGkFJ3XbWy2Ju41BX0MqE8BdQ6ojwG1yg47OSmzuw8X_5b_l34AKt1y6w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Jeong, Imsoon</creator><creator>Kim, Gyu Jong</creator><creator>Suh, Young Jin</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180401</creationdate><title>Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type</title><author>Jeong, Imsoon ; Kim, Gyu Jong ; Suh, Young Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d089ec4c9ac527075998e1c4b94f1a8b3154bec4b4aacad06efe97cf27657f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Classification</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Imsoon</creatorcontrib><creatorcontrib>Kim, Gyu Jong</creatorcontrib><creatorcontrib>Suh, Young Jin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Imsoon</au><au>Kim, Gyu Jong</au><au>Suh, Young Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>41</volume><issue>2</issue><spage>945</spage><epage>964</epage><pages>945-964</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric Q m = SO m + 2 / SO m SO 2 . The normal Jacobi operator of Codazzi type implies that the unit normal vector field N becomes A -principal or A -isotropic. Then, according to each case, we give a complete classification of Hopf real hypersurfaces in Q m = SO m + 2 / SO m SO 2 with normal Jacobi operator of Codazzi type. The result of the classification is that no such hypersurfaces exist.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-017-0485-9</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2018-04, Vol.41 (2), p.945-964
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_2019742268
source SpringerLink Journals
subjects Applications of Mathematics
Classification
Geometry
Mathematics
Mathematics and Statistics
title Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20Hypersurfaces%20in%20the%20Complex%20Quadric%20with%20Normal%20Jacobi%20Operator%20of%20Codazzi%20Type&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Jeong,%20Imsoon&rft.date=2018-04-01&rft.volume=41&rft.issue=2&rft.spage=945&rft.epage=964&rft.pages=945-964&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-017-0485-9&rft_dat=%3Cproquest_cross%3E2019742268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019742268&rft_id=info:pmid/&rfr_iscdi=true