Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type
We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric Q m = SO m + 2 / SO m SO 2 . The normal Jacobi operator of Codazzi type implies that the unit normal vector field N becomes A -principal or A -isotropic. Then, according to each case, we g...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2018-04, Vol.41 (2), p.945-964 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 964 |
---|---|
container_issue | 2 |
container_start_page | 945 |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 41 |
creator | Jeong, Imsoon Kim, Gyu Jong Suh, Young Jin |
description | We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric
Q
m
=
SO
m
+
2
/
SO
m
SO
2
. The normal Jacobi operator of Codazzi type implies that the unit normal vector field
N
becomes
A
-principal or
A
-isotropic. Then, according to each case, we give a complete classification of Hopf real hypersurfaces in
Q
m
=
SO
m
+
2
/
SO
m
SO
2
with normal Jacobi operator of Codazzi type. The result of the classification is that no such hypersurfaces exist. |
doi_str_mv | 10.1007/s40840-017-0485-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019742268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019742268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d089ec4c9ac527075998e1c4b94f1a8b3154bec4b4aacad06efe97cf27657f4d3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWGo_wF3AdfQlzSSTpRS1SrEo7TpkMomd0jZjMoO2X29KBVdm8zbn3MBB6JrCLQWQd4lDyYEAlQR4WRB1hgaMlkA4A3GOBkCZIEJCcYlGKa0hv0IwwegALd-d2eDpvnUx9dEb6xJudrhbOTwJ23bjvvFbb-rYWPzVdCv8GuI2Cy_GhqrB86yZLkQcfMZrczg0eJG3rtCFN5vkRr93iJaPD4vJlMzmT8-T-xmxYyo6UkOpnOVWGVswCbJQqnTU8kpxT01ZjWnBqwxU3BhrahDOOyWtZ1IU0vN6PEQ3p902hs_epU6vQx93-UvNgCrJGRNlpuiJsjGkFJ3XbWy2Ju41BX0MqE8BdQ6ojwG1yg47OSmzuw8X_5b_l34AKt1y6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019742268</pqid></control><display><type>article</type><title>Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type</title><source>SpringerLink Journals</source><creator>Jeong, Imsoon ; Kim, Gyu Jong ; Suh, Young Jin</creator><creatorcontrib>Jeong, Imsoon ; Kim, Gyu Jong ; Suh, Young Jin</creatorcontrib><description>We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric
Q
m
=
SO
m
+
2
/
SO
m
SO
2
. The normal Jacobi operator of Codazzi type implies that the unit normal vector field
N
becomes
A
-principal or
A
-isotropic. Then, according to each case, we give a complete classification of Hopf real hypersurfaces in
Q
m
=
SO
m
+
2
/
SO
m
SO
2
with normal Jacobi operator of Codazzi type. The result of the classification is that no such hypersurfaces exist.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-017-0485-9</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Classification ; Geometry ; Mathematics ; Mathematics and Statistics</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2018-04, Vol.41 (2), p.945-964</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017</rights><rights>Bulletin of the Malaysian Mathematical Sciences Society is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d089ec4c9ac527075998e1c4b94f1a8b3154bec4b4aacad06efe97cf27657f4d3</citedby><cites>FETCH-LOGICAL-c316t-d089ec4c9ac527075998e1c4b94f1a8b3154bec4b4aacad06efe97cf27657f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-017-0485-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-017-0485-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jeong, Imsoon</creatorcontrib><creatorcontrib>Kim, Gyu Jong</creatorcontrib><creatorcontrib>Suh, Young Jin</creatorcontrib><title>Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric
Q
m
=
SO
m
+
2
/
SO
m
SO
2
. The normal Jacobi operator of Codazzi type implies that the unit normal vector field
N
becomes
A
-principal or
A
-isotropic. Then, according to each case, we give a complete classification of Hopf real hypersurfaces in
Q
m
=
SO
m
+
2
/
SO
m
SO
2
with normal Jacobi operator of Codazzi type. The result of the classification is that no such hypersurfaces exist.</description><subject>Applications of Mathematics</subject><subject>Classification</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKAzEURYMoWGo_wF3AdfQlzSSTpRS1SrEo7TpkMomd0jZjMoO2X29KBVdm8zbn3MBB6JrCLQWQd4lDyYEAlQR4WRB1hgaMlkA4A3GOBkCZIEJCcYlGKa0hv0IwwegALd-d2eDpvnUx9dEb6xJudrhbOTwJ23bjvvFbb-rYWPzVdCv8GuI2Cy_GhqrB86yZLkQcfMZrczg0eJG3rtCFN5vkRr93iJaPD4vJlMzmT8-T-xmxYyo6UkOpnOVWGVswCbJQqnTU8kpxT01ZjWnBqwxU3BhrahDOOyWtZ1IU0vN6PEQ3p902hs_epU6vQx93-UvNgCrJGRNlpuiJsjGkFJ3XbWy2Ju41BX0MqE8BdQ6ojwG1yg47OSmzuw8X_5b_l34AKt1y6w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Jeong, Imsoon</creator><creator>Kim, Gyu Jong</creator><creator>Suh, Young Jin</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180401</creationdate><title>Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type</title><author>Jeong, Imsoon ; Kim, Gyu Jong ; Suh, Young Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d089ec4c9ac527075998e1c4b94f1a8b3154bec4b4aacad06efe97cf27657f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Classification</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Imsoon</creatorcontrib><creatorcontrib>Kim, Gyu Jong</creatorcontrib><creatorcontrib>Suh, Young Jin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Imsoon</au><au>Kim, Gyu Jong</au><au>Suh, Young Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>41</volume><issue>2</issue><spage>945</spage><epage>964</epage><pages>945-964</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric
Q
m
=
SO
m
+
2
/
SO
m
SO
2
. The normal Jacobi operator of Codazzi type implies that the unit normal vector field
N
becomes
A
-principal or
A
-isotropic. Then, according to each case, we give a complete classification of Hopf real hypersurfaces in
Q
m
=
SO
m
+
2
/
SO
m
SO
2
with normal Jacobi operator of Codazzi type. The result of the classification is that no such hypersurfaces exist.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-017-0485-9</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2018-04, Vol.41 (2), p.945-964 |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2019742268 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Classification Geometry Mathematics Mathematics and Statistics |
title | Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20Hypersurfaces%20in%20the%20Complex%20Quadric%20with%20Normal%20Jacobi%20Operator%20of%20Codazzi%20Type&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Jeong,%20Imsoon&rft.date=2018-04-01&rft.volume=41&rft.issue=2&rft.spage=945&rft.epage=964&rft.pages=945-964&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-017-0485-9&rft_dat=%3Cproquest_cross%3E2019742268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019742268&rft_id=info:pmid/&rfr_iscdi=true |