Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type

We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric Q m = SO m + 2 / SO m SO 2 . The normal Jacobi operator of Codazzi type implies that the unit normal vector field N becomes A -principal or A -isotropic. Then, according to each case, we g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2018-04, Vol.41 (2), p.945-964
Hauptverfasser: Jeong, Imsoon, Kim, Gyu Jong, Suh, Young Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex quadric Q m = SO m + 2 / SO m SO 2 . The normal Jacobi operator of Codazzi type implies that the unit normal vector field N becomes A -principal or A -isotropic. Then, according to each case, we give a complete classification of Hopf real hypersurfaces in Q m = SO m + 2 / SO m SO 2 with normal Jacobi operator of Codazzi type. The result of the classification is that no such hypersurfaces exist.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-017-0485-9