Dynamics of Orthonormal Bases Associated to Basins of Attraction

Alpay et al. (in: Recent advances in inverse scattering, Schur analysis, and stochastic processes, Springer, Berlin, pp 67–87, 2015 ), a technique was developed which allows for the construction of a reproducing kernel Hilbert space on basins of attraction containing 0. When the right conditions are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2018-04, Vol.12 (4), p.1015-1026
1. Verfasser: Tipton, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alpay et al. (in: Recent advances in inverse scattering, Schur analysis, and stochastic processes, Springer, Berlin, pp 67–87, 2015 ), a technique was developed which allows for the construction of a reproducing kernel Hilbert space on basins of attraction containing 0. When the right conditions are met, an explicit orthonormal basis can be constructed using a particular class of operators. It is natural then to consider how the orthonormal basis changes as we let the basin of attraction vary. We will consider this question for the basins of attraction containing 0 of the family of polynomials F = { a z 2 n + 2 - 2 a z 2 n + 1 : a ≠ 0 } , where n ∈ N .
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-017-0682-4