Dynamics of Orthonormal Bases Associated to Basins of Attraction
Alpay et al. (in: Recent advances in inverse scattering, Schur analysis, and stochastic processes, Springer, Berlin, pp 67–87, 2015 ), a technique was developed which allows for the construction of a reproducing kernel Hilbert space on basins of attraction containing 0. When the right conditions are...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2018-04, Vol.12 (4), p.1015-1026 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alpay et al. (in: Recent advances in inverse scattering, Schur analysis, and stochastic processes, Springer, Berlin, pp 67–87,
2015
), a technique was developed which allows for the construction of a reproducing kernel Hilbert space on basins of attraction containing 0. When the right conditions are met, an explicit orthonormal basis can be constructed using a particular class of operators. It is natural then to consider how the orthonormal basis changes as we let the basin of attraction vary. We will consider this question for the basins of attraction containing 0 of the family of polynomials
F
=
{
a
z
2
n
+
2
-
2
a
z
2
n
+
1
:
a
≠
0
}
, where
n
∈
N
. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-017-0682-4 |