Simultaneous drug delivery and cellular imaging using graphene oxide
Graphene oxide (GO), a derivative of graphene, and its related nanomaterials have attracted much attention in recent years due to the excellent biocompatibility and large surface area of GO with abundant oxygen functional groups, which further enable it to serve as a nano-bio interface. Herein, we d...
Gespeichert in:
Veröffentlicht in: | Biomaterials science 2018-03, Vol.6 (4), p.813-819 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene oxide (GO), a derivative of graphene, and its related nanomaterials have attracted much attention in recent years due to the excellent biocompatibility and large surface area of GO with abundant oxygen functional groups, which further enable it to serve as a nano-bio interface. Herein, we demonstrate the induction of blue fluorescence in GO suspensions
via
a mild thermal annealing procedure. Additionally, this procedure preserves the oxygen functional groups on the graphene plane which enables the conjugation of cancer drugs without obvious cytotoxicity. Consequently, we demonstrate the capability of GO to simultaneously play the dual-role of a: (i) cellular imaging agent and (ii) drug delivery agent in CT26 cancer cells without the need for additional fluorescent protein labeling. Our method offers a simple, controllable strategy to tune and enhance the fluorescence property of GO, which shows potential for biomedical applications and fundamental studies.
The capability of GO to simultaneously play the dual-role of a: (i) cellular imaging agent and (ii) drug delivery agent in cancer cells without the need for additional fluorescent protein labeling. |
---|---|
ISSN: | 2047-4830 2047-4849 |
DOI: | 10.1039/c7bm01192j |