An experimental investigation of Na incorporation in cordierite in low P/high T metapelites

The aim of this experimental study was to investigate the incorporation of Na in cordierite in metapelites as a function of temperature and pressure using natural quartzphyllite rocks as starting materials. The experiments were performed in a hydrothermal apparatus as well as a piston-cylinder appar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralogy and petrology 2018-04, Vol.112 (2), p.199-217
Hauptverfasser: Tropper, Peter, Wyhlidal, Stefan, Haefeker, Udo A., Mirwald, Peter W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this experimental study was to investigate the incorporation of Na in cordierite in metapelites as a function of temperature and pressure using natural quartzphyllite rocks as starting materials. The experiments were performed in a hydrothermal apparatus as well as a piston-cylinder apparatus with two natural quartzphyllite samples, which represent the protolith rocks of the hornfelses from the Brixen Granite contact aureole near Franzensfeste. Sample W shows high muscovite contents (57 wt%) and only accessory plagioclase while sample SP5 has high plagioclase (16 wt%) and lower muscovite contents (20 vol%). The experiments were done dry at pressures of 0.15, 0.3 and 0.6 GPa in a temperature range of 550 °C to 780 °C. The Na content of the newly formed cordierites shows a systematic variation and decreases linearly with increasing temperatures and no influence of pressure and melting on the Na contents of cordierite was observed. The experiments also show that the difference in mineral assemblage considerably shifts the obtained Na contents of cordierite. The P -independent temperature correlations for both sets of experiments can be described with the linear relationships: T (°C) = (Na [apfu] – 0.4052)/(−0.000487); R 2  = 0.96; (±20 °C, calibration W) and T (°C) = (Na [apfu] – 0.3671)/(−0.000383); R 2  = 0.94; (±15 °C, calibration SP5). The difference between the two temperatures is large and the SP5 experiments yield temperatures that are up to 100 °C higher. This is not unexpected since theoretical phase relations in the system NMASH predict different Na contents depending on the buffering assemblage (plagioclase vs. paragonite). On the other hand these T differences could also reflect disequilibrium behaviour in the SP5 experiments. Detailed micro-Raman spectroscopic investigations reveal that cordierites from both experiments show disordered structures but the SP5 experiments show a much higher degree of Si-Al disorder and the elevated Na contents could reflect this disequilibrium behaviour. Preliminary geothermometric calculations using the data from the W experiments are in very good agreement with T estimates from conventional geothermometry in metapelitic contact aureoles as well as high-grade migmatic gneisses from the literature.
ISSN:0930-0708
1438-1168
DOI:10.1007/s00710-017-0522-2