Phosphorus bioavailability in ash from straw and sewage sludge processed by low‐temperature biomass gasification
Reuse of phosphorus (P) from waste streams used for bioenergy conversion is desirable to reduce dependence on nonrenewable P resources. Two different ash materials from low‐temperature biomass gasification of wheat straw and sewage sludge, respectively, were investigated with regard to their P bioav...
Gespeichert in:
Veröffentlicht in: | Soil use and management 2018-03, Vol.34 (1), p.9-17 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reuse of phosphorus (P) from waste streams used for bioenergy conversion is desirable to reduce dependence on nonrenewable P resources. Two different ash materials from low‐temperature biomass gasification of wheat straw and sewage sludge, respectively, were investigated with regard to their P bioavailability. A set of pot experiments with spring barley was carried out to compare the ash P fertiliser value with mineral P fertiliser and the sewage sludge feedstock. An indirect radioactive labelling approach with 33P was used to determine the amount of P taken up from the fertiliser materials. Depending on the application rate, straw gasification ash produced a fertiliser response comparable to mineral P. However, P uptake from the ash was generally less than uptake from equivalent amounts of mineral P, and the calculated relative effectiveness was 44% after 6 weeks of plant growth. In contrast, the P fertiliser value of Fe‐rich sewage sludge after low‐temperature gasification was practically zero. These results suggest that ash from low‐temperature gasification could be developed into alternative P fertilisers; however, as the P bioavailability depends greatly on the feedstock used, a greater emphasis on feedstock composition is required. |
---|---|
ISSN: | 0266-0032 1475-2743 |
DOI: | 10.1111/sum.12399 |