Laser-induced cracks in ice due to temperature gradient and thermal stress
•The laser-induced thermal gradient generates thermal stress without melting.•The crack density depends on the laser scanning speed and the laser spot.•The laser-induced thermal stress is the main cause of the cracks in the ice. This work presents the experimental and theoretical investigations on t...
Gespeichert in:
Veröffentlicht in: | Optics and laser technology 2018-06, Vol.102, p.115-123 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •The laser-induced thermal gradient generates thermal stress without melting.•The crack density depends on the laser scanning speed and the laser spot.•The laser-induced thermal stress is the main cause of the cracks in the ice.
This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice. |
---|---|
ISSN: | 0030-3992 1879-2545 |
DOI: | 10.1016/j.optlastec.2017.12.005 |