The Interactive Effect of Multiple Stressors on Crustacean Zooplankton Communities in Montane Lakes

Nonnative fish introductions have altered thousands of naturally fishless montane lakes, resulting in cascading food web repercussions. Nitrogen deposition has been recognized as an anthropogenic contributor to acidification and eutrophication of freshwater ecosystems, which may affect the abundance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2018-02, Vol.54 (2), p.939-954
Hauptverfasser: Brittain, Jeffrey T., Strecker, Angela L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonnative fish introductions have altered thousands of naturally fishless montane lakes, resulting in cascading food web repercussions. Nitrogen deposition has been recognized as an anthropogenic contributor to acidification and eutrophication of freshwater ecosystems, which may affect the abundance and composition of planktonic communities. This study identified responses of zooplankton communities from two lakes (fish present versus absent) in Mount Rainier National Park to manipulations simulating an episodic disturbance of acidification and eutrophication via nitrogen addition in mesocosms. Zooplankton communities from lakes with different food web structure (i.e., fish present or absent) responded differently to the singular effects of acid and nitrogen addition. For instance, zooplankton biomass decreased in the acid treatment of the fishless lake experiment, but increased in response to acid in the fish‐present experiment. In contrast, the combination of acid and nitrogen often resulted in weak responses for both lake types, resulting in nonadditive effects, i.e., the net effect of the stressors was in the opposite direction than predicted, which is known as a reversal or “ecological surprise.” This experiment demonstrates the difficulty in predicting the interactive effects of multiple stressors on aquatic communities, which may pose significant challenges for habitat restoration through fish removal. Key Points Montane lakes can be used as early indicators of the impacts of environmental stressors on aquatic communities at lower elevations Zooplankton from a fishless and fish‐present lake were subjected to acidification and nutrient enrichment from nitrogen deposition Zooplankton responded differently to nitrogen by lake type and the combination of acid and nitrogen resulted in ecological surprises
ISSN:0043-1397
1944-7973
DOI:10.1002/2017WR020605