Algorithms for frequent itemset mining: a literature review
Data Analytics plays an important role in the decision making process. Insights from such pattern analysis offer vast benefits, including increased revenue, cost cutting, and improved competitive advantage. However, the hidden patterns of the frequent itemsets become more time consuming to be mined...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2019-12, Vol.52 (4), p.2603-2621 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Data Analytics plays an important role in the decision making process. Insights from such pattern analysis offer vast benefits, including increased revenue, cost cutting, and improved competitive advantage. However, the hidden patterns of the frequent itemsets become more time consuming to be mined when the amount of data increases over the time. Moreover, significant memory consumption is needed in mining the hidden patterns of the frequent itemsets due to a heavy computation by the algorithm. Therefore, an efficient algorithm is required to mine the hidden patterns of the frequent itemsets within a shorter run time and with less memory consumption while the volume of data increases over the time period. This paper reviews and presents a comparison of different algorithms for Frequent Pattern Mining (FPM) so that a more efficient FPM algorithm can be developed. |
---|---|
ISSN: | 0269-2821 1573-7462 |
DOI: | 10.1007/s10462-018-9629-z |