Low-delay broadband satellite communications with high-altitude unmanned aerial vehicles

The large number of users and the long propagation delay of communication satellites make it difficult to deploy a random access scheme that performs well in terrestrial networks. The aim of this paper is to demonstrate that a relay architecture with unmanned aerial vehicles (UAV) between the ground...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communications and networks 2018, 20(1), , pp.102-108
Hauptverfasser: Joo, Changhee, Choi, Jihwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The large number of users and the long propagation delay of communication satellites make it difficult to deploy a random access scheme that performs well in terrestrial networks. The aim of this paper is to demonstrate that a relay architecture with unmanned aerial vehicles (UAV) between the ground and satellites can facilitate satellite access with a low overhead. We consider a TDMA-based two-level relay structure, in which users transmit data to UAVs through a random access scheme, and the UAVs forward it to the satellite with either a coordinated or uncoordinated access scheme. We show that the coordinated access for the UAV- to-satellite links can substantially improve the throughput and delay performance. We conclude that a proper scheme for resource allocation between ground-to-UAVs and UAVs-to-satellite is critical to optimize the relay network, which includes the UAV altitude, and should be based on traffic demand and the number of UAVs deployed.
ISSN:1229-2370
1976-5541
DOI:10.1109/JCN.2018.000010