Classification of EEG signals for epileptic seizures using Levenberg-Marquardt algorithm based Multilayer Perceptron Neural Network
EEG is the most effective diagnostic technique to determine epilepsy in a patient. The objective of this research work is to apply classification techniques on EEG signals to determine whether the patient has suffered from epileptic seizure. This is carried out through the extraction of various time...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2018-01, Vol.34 (3), p.1669-1677 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | EEG is the most effective diagnostic technique to determine epilepsy in a patient. The objective of this research work is to apply classification techniques on EEG signals to determine whether the patient has suffered from epileptic seizure. This is carried out through the extraction of various time and frequency domain features. The two classifiers, i.e. Artificial Neural Network (ANN) and Support Vector Machine (SVM) are used and compared using various evaluation parameters. The simulation results and corresponding quantitative analysis shows that ANN classifier is superior to SVM. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-169460 |