Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure
We consider the problem of estimating the regression coefficients in a competing risks model, where the relationship between the cause-specific hazard for the cause of interest and covariates is described using linear transformation models and when cause of failure is missing at random for a subset...
Gespeichert in:
Veröffentlicht in: | Biometrika 2005-12, Vol.92 (4), p.875-891 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of estimating the regression coefficients in a competing risks model, where the relationship between the cause-specific hazard for the cause of interest and covariates is described using linear transformation models and when cause of failure is missing at random for a subset of individuals. Using the theory of Robins et al. (1994) for missing data problems and the approach of Chen et al. (2002) for estimating regression coefficients for linear transformation models, we derive augmented inverse probability weighted complete-case estimators for the regression coefficients that are doubly robust. Simulations demonstrate the relevance of the theory in finite samples. |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/92.4.875 |