Conditional properties of unconditional parametric bootstrap procedures for inference in exponential families

Higher-order inference about a scalar parameter in the presence of nuisance parameters can be achieved by bootstrapping, in circumstances where the parameter of interest is a component of the canonical parameter in a full exponential family. The optimal test, which is approximated, is a conditional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2008-09, Vol.95 (3), p.747-758
Hauptverfasser: Diciccio, Thomas J., Young, G. Alastair
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Higher-order inference about a scalar parameter in the presence of nuisance parameters can be achieved by bootstrapping, in circumstances where the parameter of interest is a component of the canonical parameter in a full exponential family. The optimal test, which is approximated, is a conditional one based on conditioning on the sufficient statistic for the nuisance parameter. A bootstrap procedure that ignores the conditioning is shown to have desirable conditional properties in providing third-order relative accuracy in approximation of p-values associated with the optimal test, in both continuous and discrete models. The bootstrap approach is equivalent to third-order analytical approaches, and is demonstrated in a number of examples to give very accurate approximations even for very small sample sizes.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asn011