Estimation of the mean function with panel count data using monotone polynomial splines
We study nonparametric likelihood-based estimators of the mean function of counting processes with panel count data using monotone polynomial splines. The generalized Rosen algorithm, proposed by Zhang & Jamshidian (2004), is used to compute the estimators. We show that the proposed spline likel...
Gespeichert in:
Veröffentlicht in: | Biometrika 2007-08, Vol.94 (3), p.705-718 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study nonparametric likelihood-based estimators of the mean function of counting processes with panel count data using monotone polynomial splines. The generalized Rosen algorithm, proposed by Zhang & Jamshidian (2004), is used to compute the estimators. We show that the proposed spline likelihood-based estimators are consistent and that their rate of convergence can be faster than n1/3. Simulation studies with moderate samples show that the estimators have smaller variances and mean squared errors than their alternatives proposed by Wellner & Zhang (2000). A real example from a bladder tumour clinical trial is used to illustrate this method. |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/asm057 |