Estimation of the mean function with panel count data using monotone polynomial splines

We study nonparametric likelihood-based estimators of the mean function of counting processes with panel count data using monotone polynomial splines. The generalized Rosen algorithm, proposed by Zhang & Jamshidian (2004), is used to compute the estimators. We show that the proposed spline likel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2007-08, Vol.94 (3), p.705-718
Hauptverfasser: Lu, Minggen, Zhang, Ying, Huang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study nonparametric likelihood-based estimators of the mean function of counting processes with panel count data using monotone polynomial splines. The generalized Rosen algorithm, proposed by Zhang & Jamshidian (2004), is used to compute the estimators. We show that the proposed spline likelihood-based estimators are consistent and that their rate of convergence can be faster than n1/3. Simulation studies with moderate samples show that the estimators have smaller variances and mean squared errors than their alternatives proposed by Wellner & Zhang (2000). A real example from a bladder tumour clinical trial is used to illustrate this method.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asm057