Ciprofloxacin Adsorption on ZnO Supported on SBA-15

Most drugs are synthesized by human medicine both for the treatment of men and animals and are also produced to maintain their physical and chemical properties for a time sufficient to serve a therapeutic purpose in treatments of some kind of illness. Ciprofloxacin is an antibiotic synthetically obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2018-04, Vol.229 (4), p.1-12, Article 125
Hauptverfasser: Sousa, Watson R. D. N., Oliveira, Antônio R., Cruz Filho, João F., Dantas, Taisa C. M., Santos, Anne G. D., Caldeira, Vínicius P. S., Luz, Geraldo E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most drugs are synthesized by human medicine both for the treatment of men and animals and are also produced to maintain their physical and chemical properties for a time sufficient to serve a therapeutic purpose in treatments of some kind of illness. Ciprofloxacin is an antibiotic synthetically obtained in 1987 and belongs to the family of fluoroquinolones and is currently prescribed in certain treatments. This work was developed with the objective of evaluating the adsorption of the ciprofloxacin antibiotic in solution on zinc oxide (ZnO) supported on SBA-15-type mesoporous silica. The results showed that the post-synthesis method is effective in impregnating zinc oxide in SBA-15 and its structure has not been damaged and has not lost its organization in the hexagonal 2D planes. The ZnO-SBA-15 (10%) sample adsorbed 69.10% of ciprofloxacin (25 mg/L) in 180 min. Freundlich adsorption model was observed with the correlation factor of R 2  = 0.9999, for the adsorbent ZnO-SBA-15 (10%), which showed the best sample. The kinetics was classified as pseudo-second order, as well as the thermodynamic parameters were determined, showing that the process has a spontaneous nature and a value of Δ H ° = 4.677 kJ/mol, evidencing that the process has the nature of physiosorption.
ISSN:0049-6979
1573-2932
DOI:10.1007/s11270-018-3778-1