Markov chain Monte Carlo methods for switching diffusion models

Reversible jump Metropolis–Hastings updating schemes can be used to analyse continuous‐time latent models, sometimes known as state space models or hidden Markov models. We consider models where the observed process X can be represented as a stochastic differential equation and where the latent proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2001-06, Vol.88 (2), p.299-315
Hauptverfasser: Liechty, John C., Roberts, Gareth O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reversible jump Metropolis–Hastings updating schemes can be used to analyse continuous‐time latent models, sometimes known as state space models or hidden Markov models. We consider models where the observed process X can be represented as a stochastic differential equation and where the latent process D is a continuous‐time Markov chain. We develop Markov chain Monte Carlo methods for analysing both Markov and non‐Markov versions of these models. As an illustration of how these methods can be used in practice we analyse data from the New York Mercantile Exchange oil market. In addition, we analyse data generated by a process that has linear and mean reverting states.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/88.2.299