The annihilating graph of a ring

Let A be a commutative ring with unity. The annihilating graph of A , denoted by G ( A ) , is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if Ann ( I ) Ann ( J ) = 0 . For every commutative ring A , we study the diameter and the gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical sciences (Karaj, Iran) Iran), 2018-03, Vol.12 (1), p.1-6
Hauptverfasser: Shafiei, Z., Maghasedi, M., Heydari, F., Khojasteh, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a commutative ring with unity. The annihilating graph of A , denoted by G ( A ) , is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if Ann ( I ) Ann ( J ) = 0 . For every commutative ring A , we study the diameter and the girth of G ( A ) . Also, we prove that if G ( A ) is a triangle-free graph, then G ( A ) is a bipartite graph. Among other results, we show that if G ( A ) is a tree, then G ( A ) is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let n be a positive integer number. We classify all integer numbers n for which G ( Z n ) is a complete or a planar graph. Finally, we compute the domination number of G ( Z n ) .
ISSN:2008-1359
2251-7456
DOI:10.1007/s40096-017-0238-9