Impairment-Based 3-D Robotic Intervention Improves Upper Extremity Work Area in Chronic Stroke: Targeting Abnormal Joint Torque Coupling With Progressive Shoulder Abduction Loading

The implementation of a robotic system ( ACT 3D ) that allowed for a quantitative measurement of abnormal joint torque coupling in chronic stroke survivors and, most importantly, a quantitative means of initiating and progressing an impairment-based intervention, is described. Individuals with chron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2009-06, Vol.25 (3), p.549-555
Hauptverfasser: Ellis, M.D., Sukal-Moulton, T.M., Dewald, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The implementation of a robotic system ( ACT 3D ) that allowed for a quantitative measurement of abnormal joint torque coupling in chronic stroke survivors and, most importantly, a quantitative means of initiating and progressing an impairment-based intervention, is described. Individuals with chronic moderate to severe stroke ( n = 8) participated in this single-group pretest-posttest design study. Subjects were trained over eight weeks by progressively increasing the level of shoulder abduction loading experienced by the participant during reaching repetitions as performance improved. Reaching work area was evaluated pre- and postintervention for ten different shoulder abduction loading levels along with isometric single-joint strength and a qualitative clinical assessment of impairment. There was a significant effect of session (pre versus post) with an increase in reaching work area, despite no change in single-joint strength. This data suggests that specifically targeting the abnormal joint torque coupling impairment through progressive shoulder abduction loading is an effective strategy for improving reaching work area following hemiparetic stroke. Application of robotics, namely, the ACT 3D , allowed for quantitative control of the exercise parameters needed to directly target the synergistic coupling impairment. The targeted reduction of abnormal joint torque coupling is likely the key factor explaining the improvements in reaching range of motion achieved with this intervention.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2009.2017111