Fatou property, representations, and extensions of law-invariant risk measures on general Orlicz spaces

We provide a variety of results for quasiconvex, law-invariant functionals defined on a general Orlicz space, which extend well-known results from the setting of bounded random variables. First, we show that Delbaen’s representation of convex functionals with the Fatou property, which fails in a gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finance and stochastics 2018-04, Vol.22 (2), p.395-415
Hauptverfasser: Gao, Niushan, Leung, Denny, Munari, Cosimo, Xanthos, Foivos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a variety of results for quasiconvex, law-invariant functionals defined on a general Orlicz space, which extend well-known results from the setting of bounded random variables. First, we show that Delbaen’s representation of convex functionals with the Fatou property, which fails in a general Orlicz space, can always be achieved under the assumption of law-invariance. Second, we identify the class of Orlicz spaces where the characterization of the Fatou property in terms of norm-lower semicontinuity by Jouini, Schachermayer and Touzi continues to hold. Third, we extend Kusuoka’s representation to a general Orlicz space. Finally, we prove a version of the extension result by Filipović and Svindland by replacing norm-lower semicontinuity with the (generally non-equivalent) Fatou property. Our results have natural applications to the theory of risk measures.
ISSN:0949-2984
1432-1122
DOI:10.1007/s00780-018-0357-7