Analyzing concept drift and shift from sample data
Concept drift and shift are major issues that greatly affect the accuracy and reliability of many real-world applications of machine learning. We propose a new data mining task, concept drift mapping —the description and analysis of instances of concept drift or shift. We argue that concept drift ma...
Gespeichert in:
Veröffentlicht in: | Data mining and knowledge discovery 2018-09, Vol.32 (5), p.1179-1199 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Concept drift and shift are major issues that greatly affect the accuracy and reliability of many real-world applications of machine learning. We propose a new data mining task,
concept drift mapping
—the description and analysis of instances of concept drift or shift. We argue that concept drift mapping is an essential prerequisite for tackling concept drift and shift. We propose tools for this purpose, arguing for the importance of quantitative descriptions of drift and shift in marginal distributions. We present quantitative concept drift mapping techniques, along with methods for visualizing their results. We illustrate their effectiveness for real-world applications across energy-pricing, vegetation monitoring and airline scheduling. |
---|---|
ISSN: | 1384-5810 1573-756X |
DOI: | 10.1007/s10618-018-0554-1 |