Ranking, clustering and fusing the normalized LBP temporal facial features for face recognition in video sequences

This paper proposes a novel approach for recognizing faces in videos with high recognition rate. Initially, the feature vector based on Normalized Local Binary Patterns is obtained for the face region. A set of training and testing videos are used in this face recognition procedure. Each frame in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2018-03, Vol.77 (5), p.5785-5802
Hauptverfasser: Ithaya Rani, P., Hari Prasath, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel approach for recognizing faces in videos with high recognition rate. Initially, the feature vector based on Normalized Local Binary Patterns is obtained for the face region. A set of training and testing videos are used in this face recognition procedure. Each frame in the query video is matched with the signature of the faces in the database using Euclidean distance and a rank list is formed. Each ranked list is clustered and its reliability is analyzed for re-ranking. Multiple re-ranked lists of the query video is fused together to form a video signature. This video signature embeds diverse intra-personal variations such as poses, expressions and facilitates in matching two videos with large variations. For matching two videos, their composite ranked lists are compared using a Kendall Tau distance measure. The developed methods are deployed on the YouTube and ChokePoint videos, and they exhibit significant performance improvement owing to their novel approach when compared with the existing techniques.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-017-4491-6