Bias correction of simulated storm surge height considering coastline complexity

In this study, we propose a new approach for model validation that can be applied to the projection of possible future storm surge heights (SSHs) on the regional scale. First, this study conducts a series of SSHs for the southeastern coast of the Korean Peninsula (KP) by six typhoons that produced S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological Research Letters 2017, Vol.11(2), pp.121-127
Hauptverfasser: Yang, Jung-A, Kim, Sooyoul, Mori, Nobuhito, Mase, Hajime
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we propose a new approach for model validation that can be applied to the projection of possible future storm surge heights (SSHs) on the regional scale. First, this study conducts a series of SSHs for the southeastern coast of the Korean Peninsula (KP) by six typhoons that produced SSHs over 1.0 m since 1979 and identifies the bias between simulated and observed SSHs. Next, formulas for the bias correction using a geographic parameter, in particular the coastline complexity factors, are drawn and validated. Finally, the effect of the proposed bias correction on projection of future SSHs is examined by performing simple tests to consider only central pressure drops to reflect the impact of climate change. It can be seen that the bias correction method considering the coastline complexity can improve the model’s accuracy by 14% to 23% and prevent potential overestimation by up to 20% of the maximum SSHs considering climate change effect on the southeastern coast of the KP.
ISSN:1882-3416
1882-3416
DOI:10.3178/hrl.11.121