Maximum Volume Constrained Graph Nonnegative Matrix Factorization for Facial Expression Recognition

In this work, two new proposed NMF models are developed for facial expression recognition. They are called maximum volume constrained nonnegative matrix factorization (MV_NMF) and maximum volume constrained graph nonnegative matrix factorization (MV_GNMF). They achieve sparseness from a larger simpl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2017/12/01, Vol.E100.A(12), pp.3081-3085
Hauptverfasser: DUONG, Viet-Hang, BUI, Manh-Quan, DING, Jian-Jiun, PHAM, Bach-Tung, BAO, Pham The, WANG, Jia-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, two new proposed NMF models are developed for facial expression recognition. They are called maximum volume constrained nonnegative matrix factorization (MV_NMF) and maximum volume constrained graph nonnegative matrix factorization (MV_GNMF). They achieve sparseness from a larger simplicial cone constraint and the extracted features preserve the topological structure of the original images.
ISSN:0916-8508
1745-1337
DOI:10.1587/transfun.E100.A.3081