Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information
This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior informat...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2017/09/01, Vol.E100.A(9), pp.2013-2020 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2020 |
---|---|
container_issue | 9 |
container_start_page | 2013 |
container_title | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
container_volume | E100.A |
creator | XU, Wenbo CUI, Yupeng TIAN, Yun WANG, Siye LIN, Jiaru |
description | This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior information on the support probabilities, i.e., the probabilities that the entries in each component are nonzero. We give both the sufficient and necessary conditions on the total number of measurements $\sum\nolimits_{j = 1}^J M_j$ that is needed to recover the support set of each component perfectly. The results show that when the number of signal J increases, the required average number of measurements $\sum\nolimits_{j = 1}^J M_j/J$ decreases. Furthermore, we propose an extension of one existing algorithm for DCS to exploit the prior information, and simulations verify its improved performance. |
doi_str_mv | 10.1587/transfun.E100.A.2013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015004945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015004945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9c9e85b72506404b28d779603085c2ebff7f19103bed095c64797f8e542c64fc3</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWKv_wMOC562TTdJsjqV-FYsK1ZsQdrNJm9Jma5JF_PdmqRbB0wzM-8wwD0KXGEaYlfw6-soF07nRLQYYTUYFYHKEBphTlmNC-DEagMDjvGRQnqKzENYAuCwwHaD3RWeMVVa7mFWuyZ600iFU_iubtq6x0bYuZK3JbmyI3tZd1E2abHc-pVK70C5Yt8w-bVxlL962Pps50_pt1ZPn6MRUm6AvfuoQvd3dvk4f8vnz_Ww6meeKYhJzoYQuWc0LBmMKtC7KhnMxBgIlU4WujeEGCwyk1g0IpsaUC25KzWiReqPIEF3t9-58-9HpEOW67bxLJ2VSwQCooCyl6D6lfBuC10buvN2mVyUG2XuUvx5l71FOepgk7HGPrUOslvoAVT5atdH_IPGXPqTUqvJSO_INZY6EcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015004945</pqid></control><display><type>article</type><title>Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>XU, Wenbo ; CUI, Yupeng ; TIAN, Yun ; WANG, Siye ; LIN, Jiaru</creator><creatorcontrib>XU, Wenbo ; CUI, Yupeng ; TIAN, Yun ; WANG, Siye ; LIN, Jiaru</creatorcontrib><description>This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior information on the support probabilities, i.e., the probabilities that the entries in each component are nonzero. We give both the sufficient and necessary conditions on the total number of measurements $\sum\nolimits_{j = 1}^J M_j$ that is needed to recover the support set of each component perfectly. The results show that when the number of signal J increases, the required average number of measurements $\sum\nolimits_{j = 1}^J M_j/J$ decreases. Furthermore, we propose an extension of one existing algorithm for DCS to exploit the prior information, and simulations verify its improved performance.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.E100.A.2013</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>compressed sensing (CS) ; Computer simulation ; distributed CS ; Innovations ; prior information ; sufficient and necessary conditions ; support</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017/09/01, Vol.E100.A(9), pp.2013-2020</ispartof><rights>2017 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9c9e85b72506404b28d779603085c2ebff7f19103bed095c64797f8e542c64fc3</citedby><cites>FETCH-LOGICAL-c413t-9c9e85b72506404b28d779603085c2ebff7f19103bed095c64797f8e542c64fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>XU, Wenbo</creatorcontrib><creatorcontrib>CUI, Yupeng</creatorcontrib><creatorcontrib>TIAN, Yun</creatorcontrib><creatorcontrib>WANG, Siye</creatorcontrib><creatorcontrib>LIN, Jiaru</creatorcontrib><title>Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior information on the support probabilities, i.e., the probabilities that the entries in each component are nonzero. We give both the sufficient and necessary conditions on the total number of measurements $\sum\nolimits_{j = 1}^J M_j$ that is needed to recover the support set of each component perfectly. The results show that when the number of signal J increases, the required average number of measurements $\sum\nolimits_{j = 1}^J M_j/J$ decreases. Furthermore, we propose an extension of one existing algorithm for DCS to exploit the prior information, and simulations verify its improved performance.</description><subject>compressed sensing (CS)</subject><subject>Computer simulation</subject><subject>distributed CS</subject><subject>Innovations</subject><subject>prior information</subject><subject>sufficient and necessary conditions</subject><subject>support</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNplkE1LAzEQhoMoWKv_wMOC562TTdJsjqV-FYsK1ZsQdrNJm9Jma5JF_PdmqRbB0wzM-8wwD0KXGEaYlfw6-soF07nRLQYYTUYFYHKEBphTlmNC-DEagMDjvGRQnqKzENYAuCwwHaD3RWeMVVa7mFWuyZ600iFU_iubtq6x0bYuZK3JbmyI3tZd1E2abHc-pVK70C5Yt8w-bVxlL962Pps50_pt1ZPn6MRUm6AvfuoQvd3dvk4f8vnz_Ww6meeKYhJzoYQuWc0LBmMKtC7KhnMxBgIlU4WujeEGCwyk1g0IpsaUC25KzWiReqPIEF3t9-58-9HpEOW67bxLJ2VSwQCooCyl6D6lfBuC10buvN2mVyUG2XuUvx5l71FOepgk7HGPrUOslvoAVT5atdH_IPGXPqTUqvJSO_INZY6EcQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>XU, Wenbo</creator><creator>CUI, Yupeng</creator><creator>TIAN, Yun</creator><creator>WANG, Siye</creator><creator>LIN, Jiaru</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170901</creationdate><title>Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information</title><author>XU, Wenbo ; CUI, Yupeng ; TIAN, Yun ; WANG, Siye ; LIN, Jiaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9c9e85b72506404b28d779603085c2ebff7f19103bed095c64797f8e542c64fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>compressed sensing (CS)</topic><topic>Computer simulation</topic><topic>distributed CS</topic><topic>Innovations</topic><topic>prior information</topic><topic>sufficient and necessary conditions</topic><topic>support</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XU, Wenbo</creatorcontrib><creatorcontrib>CUI, Yupeng</creatorcontrib><creatorcontrib>TIAN, Yun</creatorcontrib><creatorcontrib>WANG, Siye</creatorcontrib><creatorcontrib>LIN, Jiaru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XU, Wenbo</au><au>CUI, Yupeng</au><au>TIAN, Yun</au><au>WANG, Siye</au><au>LIN, Jiaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>E100.A</volume><issue>9</issue><spage>2013</spage><epage>2020</epage><pages>2013-2020</pages><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior information on the support probabilities, i.e., the probabilities that the entries in each component are nonzero. We give both the sufficient and necessary conditions on the total number of measurements $\sum\nolimits_{j = 1}^J M_j$ that is needed to recover the support set of each component perfectly. The results show that when the number of signal J increases, the required average number of measurements $\sum\nolimits_{j = 1}^J M_j/J$ decreases. Furthermore, we propose an extension of one existing algorithm for DCS to exploit the prior information, and simulations verify its improved performance.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.E100.A.2013</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8508 |
ispartof | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017/09/01, Vol.E100.A(9), pp.2013-2020 |
issn | 0916-8508 1745-1337 |
language | eng |
recordid | cdi_proquest_journals_2015004945 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | compressed sensing (CS) Computer simulation distributed CS Innovations prior information sufficient and necessary conditions support |
title | Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20and%20Necessary%20Conditions%20of%20Distributed%20Compressed%20Sensing%20with%20Prior%20Information&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=XU,%20Wenbo&rft.date=2017-09-01&rft.volume=E100.A&rft.issue=9&rft.spage=2013&rft.epage=2020&rft.pages=2013-2020&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.E100.A.2013&rft_dat=%3Cproquest_cross%3E2015004945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015004945&rft_id=info:pmid/&rfr_iscdi=true |