Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information

This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2017/09/01, Vol.E100.A(9), pp.2013-2020
Hauptverfasser: XU, Wenbo, CUI, Yupeng, TIAN, Yun, WANG, Siye, LIN, Jiaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2020
container_issue 9
container_start_page 2013
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E100.A
creator XU, Wenbo
CUI, Yupeng
TIAN, Yun
WANG, Siye
LIN, Jiaru
description This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior information on the support probabilities, i.e., the probabilities that the entries in each component are nonzero. We give both the sufficient and necessary conditions on the total number of measurements $\sum\nolimits_{j = 1}^J M_j$ that is needed to recover the support set of each component perfectly. The results show that when the number of signal J increases, the required average number of measurements $\sum\nolimits_{j = 1}^J M_j/J$ decreases. Furthermore, we propose an extension of one existing algorithm for DCS to exploit the prior information, and simulations verify its improved performance.
doi_str_mv 10.1587/transfun.E100.A.2013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015004945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015004945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9c9e85b72506404b28d779603085c2ebff7f19103bed095c64797f8e542c64fc3</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWKv_wMOC562TTdJsjqV-FYsK1ZsQdrNJm9Jma5JF_PdmqRbB0wzM-8wwD0KXGEaYlfw6-soF07nRLQYYTUYFYHKEBphTlmNC-DEagMDjvGRQnqKzENYAuCwwHaD3RWeMVVa7mFWuyZ600iFU_iubtq6x0bYuZK3JbmyI3tZd1E2abHc-pVK70C5Yt8w-bVxlL962Pps50_pt1ZPn6MRUm6AvfuoQvd3dvk4f8vnz_Ww6meeKYhJzoYQuWc0LBmMKtC7KhnMxBgIlU4WujeEGCwyk1g0IpsaUC25KzWiReqPIEF3t9-58-9HpEOW67bxLJ2VSwQCooCyl6D6lfBuC10buvN2mVyUG2XuUvx5l71FOepgk7HGPrUOslvoAVT5atdH_IPGXPqTUqvJSO_INZY6EcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015004945</pqid></control><display><type>article</type><title>Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>XU, Wenbo ; CUI, Yupeng ; TIAN, Yun ; WANG, Siye ; LIN, Jiaru</creator><creatorcontrib>XU, Wenbo ; CUI, Yupeng ; TIAN, Yun ; WANG, Siye ; LIN, Jiaru</creatorcontrib><description>This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior information on the support probabilities, i.e., the probabilities that the entries in each component are nonzero. We give both the sufficient and necessary conditions on the total number of measurements $\sum\nolimits_{j = 1}^J M_j$ that is needed to recover the support set of each component perfectly. The results show that when the number of signal J increases, the required average number of measurements $\sum\nolimits_{j = 1}^J M_j/J$ decreases. Furthermore, we propose an extension of one existing algorithm for DCS to exploit the prior information, and simulations verify its improved performance.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.E100.A.2013</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>compressed sensing (CS) ; Computer simulation ; distributed CS ; Innovations ; prior information ; sufficient and necessary conditions ; support</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017/09/01, Vol.E100.A(9), pp.2013-2020</ispartof><rights>2017 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9c9e85b72506404b28d779603085c2ebff7f19103bed095c64797f8e542c64fc3</citedby><cites>FETCH-LOGICAL-c413t-9c9e85b72506404b28d779603085c2ebff7f19103bed095c64797f8e542c64fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>XU, Wenbo</creatorcontrib><creatorcontrib>CUI, Yupeng</creatorcontrib><creatorcontrib>TIAN, Yun</creatorcontrib><creatorcontrib>WANG, Siye</creatorcontrib><creatorcontrib>LIN, Jiaru</creatorcontrib><title>Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior information on the support probabilities, i.e., the probabilities that the entries in each component are nonzero. We give both the sufficient and necessary conditions on the total number of measurements $\sum\nolimits_{j = 1}^J M_j$ that is needed to recover the support set of each component perfectly. The results show that when the number of signal J increases, the required average number of measurements $\sum\nolimits_{j = 1}^J M_j/J$ decreases. Furthermore, we propose an extension of one existing algorithm for DCS to exploit the prior information, and simulations verify its improved performance.</description><subject>compressed sensing (CS)</subject><subject>Computer simulation</subject><subject>distributed CS</subject><subject>Innovations</subject><subject>prior information</subject><subject>sufficient and necessary conditions</subject><subject>support</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNplkE1LAzEQhoMoWKv_wMOC562TTdJsjqV-FYsK1ZsQdrNJm9Jma5JF_PdmqRbB0wzM-8wwD0KXGEaYlfw6-soF07nRLQYYTUYFYHKEBphTlmNC-DEagMDjvGRQnqKzENYAuCwwHaD3RWeMVVa7mFWuyZ600iFU_iubtq6x0bYuZK3JbmyI3tZd1E2abHc-pVK70C5Yt8w-bVxlL962Pps50_pt1ZPn6MRUm6AvfuoQvd3dvk4f8vnz_Ww6meeKYhJzoYQuWc0LBmMKtC7KhnMxBgIlU4WujeEGCwyk1g0IpsaUC25KzWiReqPIEF3t9-58-9HpEOW67bxLJ2VSwQCooCyl6D6lfBuC10buvN2mVyUG2XuUvx5l71FOepgk7HGPrUOslvoAVT5atdH_IPGXPqTUqvJSO_INZY6EcQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>XU, Wenbo</creator><creator>CUI, Yupeng</creator><creator>TIAN, Yun</creator><creator>WANG, Siye</creator><creator>LIN, Jiaru</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170901</creationdate><title>Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information</title><author>XU, Wenbo ; CUI, Yupeng ; TIAN, Yun ; WANG, Siye ; LIN, Jiaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9c9e85b72506404b28d779603085c2ebff7f19103bed095c64797f8e542c64fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>compressed sensing (CS)</topic><topic>Computer simulation</topic><topic>distributed CS</topic><topic>Innovations</topic><topic>prior information</topic><topic>sufficient and necessary conditions</topic><topic>support</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XU, Wenbo</creatorcontrib><creatorcontrib>CUI, Yupeng</creatorcontrib><creatorcontrib>TIAN, Yun</creatorcontrib><creatorcontrib>WANG, Siye</creatorcontrib><creatorcontrib>LIN, Jiaru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XU, Wenbo</au><au>CUI, Yupeng</au><au>TIAN, Yun</au><au>WANG, Siye</au><au>LIN, Jiaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>E100.A</volume><issue>9</issue><spage>2013</spage><epage>2020</epage><pages>2013-2020</pages><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior information on the support probabilities, i.e., the probabilities that the entries in each component are nonzero. We give both the sufficient and necessary conditions on the total number of measurements $\sum\nolimits_{j = 1}^J M_j$ that is needed to recover the support set of each component perfectly. The results show that when the number of signal J increases, the required average number of measurements $\sum\nolimits_{j = 1}^J M_j/J$ decreases. Furthermore, we propose an extension of one existing algorithm for DCS to exploit the prior information, and simulations verify its improved performance.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.E100.A.2013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017/09/01, Vol.E100.A(9), pp.2013-2020
issn 0916-8508
1745-1337
language eng
recordid cdi_proquest_journals_2015004945
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects compressed sensing (CS)
Computer simulation
distributed CS
Innovations
prior information
sufficient and necessary conditions
support
title Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20and%20Necessary%20Conditions%20of%20Distributed%20Compressed%20Sensing%20with%20Prior%20Information&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=XU,%20Wenbo&rft.date=2017-09-01&rft.volume=E100.A&rft.issue=9&rft.spage=2013&rft.epage=2020&rft.pages=2013-2020&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.E100.A.2013&rft_dat=%3Cproquest_cross%3E2015004945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015004945&rft_id=info:pmid/&rfr_iscdi=true