Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information

This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2017/09/01, Vol.E100.A(9), pp.2013-2020
Hauptverfasser: XU, Wenbo, CUI, Yupeng, TIAN, Yun, WANG, Siye, LIN, Jiaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior information on the support probabilities, i.e., the probabilities that the entries in each component are nonzero. We give both the sufficient and necessary conditions on the total number of measurements $\sum\nolimits_{j = 1}^J M_j$ that is needed to recover the support set of each component perfectly. The results show that when the number of signal J increases, the required average number of measurements $\sum\nolimits_{j = 1}^J M_j/J$ decreases. Furthermore, we propose an extension of one existing algorithm for DCS to exploit the prior information, and simulations verify its improved performance.
ISSN:0916-8508
1745-1337
DOI:10.1587/transfun.E100.A.2013