Behavior-Level Analysis of a Successive Stochastic Approximation Analog-to-Digital Conversion System for Multi-Channel Biomedical Data Acquisition
In the present paper, we propose a novel high-resolution analog-to-digital converter (ADC) for low-power biomedical analog front-ends, which we call the successive stochastic approximation ADC. The proposed ADC uses a stochastic flash ADC (SF-ADC) to realize a digitally controlled variable-threshold...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2017/10/01, Vol.E100.A(10), pp.2073-2085 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we propose a novel high-resolution analog-to-digital converter (ADC) for low-power biomedical analog front-ends, which we call the successive stochastic approximation ADC. The proposed ADC uses a stochastic flash ADC (SF-ADC) to realize a digitally controlled variable-threshold comparator in a successive-approximation-register ADC (SAR-ADC), which can correct errors originating from the internal digital-to-analog converter in the SAR-ADC. For the residual error after SAR-ADC operation, which can be smaller than thermal noise, the SF-ADC uses the statistical characteristics of noise to achieve high resolution. The SF-ADC output for the residual signal is combined with the SAR-ADC output to obtain high-precision output data using the supervised machine learning method. |
---|---|
ISSN: | 0916-8508 1745-1337 |
DOI: | 10.1587/transfun.E100.A.2073 |