How Human Activities Affect Heavy Metal Contamination of Soil and Sediment in a Long-Term Reclaimed Area of the Liaohe River Delta, North China
Heavy metal pollution in soils and sediments is becoming a matter of wide concern, this study was carried out in Dawa County of the Liaohe River Delta, with the aim of exploring the impacts of land use levels on heavy metal contamination of soil and sediment. A total of 129 soil samples were collect...
Gespeichert in:
Veröffentlicht in: | Sustainability 2018-01, Vol.10 (2), p.338 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heavy metal pollution in soils and sediments is becoming a matter of wide concern, this study was carried out in Dawa County of the Liaohe River Delta, with the aim of exploring the impacts of land use levels on heavy metal contamination of soil and sediment. A total of 129 soil samples were collected in different land use intensities (LUI). Soil metals (Fe, Mn, Cd, Cr, Cu, Ni, Pb and Zn) and soil salinity, pH, soil organic carbon (SOC), nitrate nitrogen (NO3−-N), available phosphorus (AP) and grain sizes were analyzed. Correlation analysis indicated that SOC and grain size played important roles in affecting the heavy metal distribution. The factor analysis results indicated that heavy metal contamination was most probably caused by industrial and agricultural wastewater discharges, domestic sewage discharge and atmospheric deposition. Using ANOVA, it found that human activities significantly changed soil physic-chemical properties through soil erosion, leaching and fertilizer application, further affecting the behaviors of heavy metals in the soil and sediments. The anthropogenic factors could lead to potential environmental risk, as indicated by the Geo-accumulation index (Igeo) results of heavy metals. Overall, the heavy metals generally had approached or even exceeded moderately polluted (0 < Igeo < 1, 1 < Igeo < 2), but the Pb and Cu pollution level was low (Igeo < 0), and the Cd pollution level was moderately or strongly polluted (2 < Igeo < 3, 3 < Igeo < 4) in the five land use levels. This study will provide valuable information for appropriately determining how land should be used in future reclamation areas, as well as for the sustainable management of estuarine areas around the world. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su10020338 |