A Proposal of Highly Responsive Distributed Denial-of-Service Attacks Detection Using Real-Time Burst Detection Method
Distributed Denial-of-Service (DDoS) attack detection systems are classified into a signature based approach and an anomaly based approach. However, such methods tend to suffer from low responsiveness. On the other hand, real-time burst detection which is used in data mining offers two advantages ov...
Gespeichert in:
Veröffentlicht in: | Journal of Information Processing 2018, Vol.26, pp.257-266 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Distributed Denial-of-Service (DDoS) attack detection systems are classified into a signature based approach and an anomaly based approach. However, such methods tend to suffer from low responsiveness. On the other hand, real-time burst detection which is used in data mining offers two advantages over traditional statistical methods. First, it can be used for real-time detection when an event is occurring, and second, it can work with less processing as information about events are compressed, even if a large number of events occur. Here, the authors add the function for attack detection in real-time burst detection technique, and propose a highly responsive DDoS attack detection technique. This paper performs experiments to evaluate its effectiveness, and discusses its detection accuracy and processing performance. |
---|---|
ISSN: | 1882-6652 1882-6652 |
DOI: | 10.2197/ipsjjip.26.257 |