Encoding Detection and Bit Rate Classification of AMR-Coded Speech Based on Deep Neural Network

A method for encoding detection and bit rate classification of AMR-coded speech is proposed. For each texture frame, 184 features consisting of the short-term and long-term temporal statistics of speech parameters are extracted, which can effectively measure the amount of distortion due to AMR. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2018/01/01, Vol.E101.D(1), pp.269-272
Hauptverfasser: SHIN, Seong-Hyeon, JANG, Woo-Jin, YUN, Ho-Won, PARK, Hochong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for encoding detection and bit rate classification of AMR-coded speech is proposed. For each texture frame, 184 features consisting of the short-term and long-term temporal statistics of speech parameters are extracted, which can effectively measure the amount of distortion due to AMR. The deep neural network then classifies the bit rate of speech after analyzing the extracted features. It is confirmed that the proposed features provide better performance than the conventional spectral features designed for bit rate classification of coded audio.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2017EDL8155