Enhanced Depiction of High Dynamic Images Using Tone Mapping Operator and Chromatic Adaptation Transform

The problem of reproducing high dynamic range (HDR) images on devices with a restricted dynamic range has gained a lot of interest in the computer graphics community. Various approaches to this issue exist, spanning several research areas, including computer graphics, image processing, color vision,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Electronics 2017/11/01, Vol.E100.C(11), pp.1031-1034
Hauptverfasser: CHOI, Ho-Hyoung, YUN, Byoung-Ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of reproducing high dynamic range (HDR) images on devices with a restricted dynamic range has gained a lot of interest in the computer graphics community. Various approaches to this issue exist, spanning several research areas, including computer graphics, image processing, color vision, and physiology. However, most of the approaches to the issue have several serious well-known color distortion problems. Accordingly, this article presents a tone-mapping method. The proposed method comprises the tone-mapping operator and the chromatic adaptation transform. The tone-mapping method is combined with linear and non-linear mapping using visual gamma based on contrast sensitive function (CSF) and using key of scene value, where the visual gamma is adopted to automatically control the dynamic range, parameter free, as well as to avoid both the luminance shift and the hue shift in the displayed images. Furthermore, the key of scene value is used to represent whether the scene was subjectively light, norm, dark. The resulting image is then processed through a chromatic adaptation transform and emphasis lies in human visual perception (HVP). The experiment results show that the proposed method yields better performance of the color rendering over the conventional method in subjective and quantitative quality and color reproduction.
ISSN:0916-8524
1745-1353
DOI:10.1587/transele.E100.C.1031