Enhancing Purchase Behavior Prediction with Temporally Popular Items

In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use traditional features based on the statistics and temporal dynamics of items. Those features...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2017/09/01, Vol.E100.D(9), pp.2237-2240
Hauptverfasser: CHEN, Chen, HOU, Chunyan, XIAO, Jiakun, WEN, Yanlong, YUAN, Xiaojie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use traditional features based on the statistics and temporal dynamics of items. Those features lead to the loss of detailed items' information. In this study, we propose a novel kind of features based on temporally popular items to improve the prediction. Experiments on the real-world dataset have demonstrated the effectiveness and the efficiency of our proposed method. Features based on temporally popular items are compared with traditional features which are associated with statistics, temporal dynamics and collaborative filter of items. We find that temporally popular items are an effective and irreplaceable supplement of traditional features. Our study shed light on the effectiveness of the combination of popularity and temporal dynamics of items which can widely used for a variety of recommendations in e-commerce sites.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2017EDL8057