Resample-Based Hybrid Multi-Hypothesis Scheme for Distributed Compressive Video Sensing
Multi-hypothesis prediction technique, which exploits inter-frame correlation efficiently, is widely used in block-based distributed compressive video sensing. To solve the problem of inaccurate prediction in multi-hypothesis prediction technique at a low sampling rate and enhance the reconstruction...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2017/12/01, Vol.E100.D(12), pp.3073-3076 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi-hypothesis prediction technique, which exploits inter-frame correlation efficiently, is widely used in block-based distributed compressive video sensing. To solve the problem of inaccurate prediction in multi-hypothesis prediction technique at a low sampling rate and enhance the reconstruction quality of non-key frames, we present a resample-based hybrid multi-hypothesis scheme for block-based distributed compressive video sensing. The innovations in this paper include: (1) multi-hypothesis reconstruction based on measurements reorganization (MR-MH) which integrates side information into the original measurements; (2) hybrid multi-hypothesis (H-MH) reconstruction which mixes multiple multi-hypothesis reconstructions adaptively by resampling each reconstruction. Experimental results show that the proposed scheme outperforms the state-of-the-art technique at the same low sampling rate. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2017EDL8133 |