LTDE: A Layout Tree Based Approach for Deep Page Data Extraction

Content extraction from deep Web pages has received great attention in recent years. However, the increasingly complicated HTML structure of Web documents makes it more difficult to recognize the data records by only analyzing the HTML source code. In this paper, we propose a method named LTDE to ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2017/05/01, Vol.E100.D(5), pp.1067-1078
Hauptverfasser: ZENG, Jun, LI, Feng, FLANAGAN, Brendan, HIROKAWA, Sachio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Content extraction from deep Web pages has received great attention in recent years. However, the increasingly complicated HTML structure of Web documents makes it more difficult to recognize the data records by only analyzing the HTML source code. In this paper, we propose a method named LTDE to extract data records from a deep Web page. Instead of analyzing the HTML source code, LTDE utilizes the visual features of data records in deep Web pages. A Web page is considered as a finite set of visual blocks. The data records are the visual blocks that have similar layout. We also propose a pattern recognizing method named layout tree to cluster the similar layout visual blocks. The weight of all clusters is calculated, and the visual blocks in the cluster that has the highest weight are chosen as the data records to be extracted. The experiment results show that LTDE has higher effectiveness and better robustness for Web data extraction compared to previous works.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2016EDP7375