Packet Delay Estimation That Transcends a Fundamental Accuracy Bound due to Bias in Active Measurements
For network researchers and practitioners, active measurement, in which probe packets are injected into a network, is a powerful tool to measure end-to-end delay. It is, however, suffers the intrusiveness problem, where the load of the probe traffic itself affects the network QoS. In this paper, we...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Communications 2017/08/01, Vol.E100.B(8), pp.1377-1387 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For network researchers and practitioners, active measurement, in which probe packets are injected into a network, is a powerful tool to measure end-to-end delay. It is, however, suffers the intrusiveness problem, where the load of the probe traffic itself affects the network QoS. In this paper, we first demonstrate that there exists a fundamental accuracy bound of the conventional active measurement of delay. Second, to transcend that bound, we propose INTrusiveness-aware ESTimation (INTEST), an approach that compensates for the delays produced by probe packets in wired networks. Simulations of M/M/1 and MMPP/M/1 show that INTEST enables a more accurate estimation of end-to-end delay than conventional methods. Furthermore, we extend INTEST for multi-hop networks by using timestamps or multi-flow probes. |
---|---|
ISSN: | 0916-8516 1745-1345 |
DOI: | 10.1587/transcom.2016EBP3364 |