Improving Feature-Rich Transition-Based Constituent Parsing Using Recurrent Neural Networks

Conventional feature-rich parsers based on manually tuned features have achieved state-of-the-art performance. However, these parsers are not good at handling long-term dependencies using only the clues captured by a prepared feature template. On the other hand, recurrent neural network (RNN)-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2017/09/01, Vol.E100.D(9), pp.2205-2214
Hauptverfasser: MA, Chunpeng, TAMURA, Akihiro, LIU, Lemao, ZHAO, Tiejun, SUMITA, Eiichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional feature-rich parsers based on manually tuned features have achieved state-of-the-art performance. However, these parsers are not good at handling long-term dependencies using only the clues captured by a prepared feature template. On the other hand, recurrent neural network (RNN)-based parsers can encode unbounded history information effectively, but they perform not well for small tree structures, especially when low-frequency words are involved, and they cannot use prior linguistic knowledge. In this paper, we propose a simple but effective framework to combine the merits of feature-rich transition-based parsers and RNNs. Specifically, the proposed framework incorporates RNN-based scores into the feature template used by a feature-rich parser. On English WSJ treebank and SPMRL 2014 German treebank, our framework achieves state-of-the-art performance (91.56 F-score for English and 83.06 F-score for German), without requiring any additional unlabeled data.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2017EDP7003