Lifting cusp forms to Maass forms with an application to partitions
For 2 < k [set membership] [Formula: see text], we define lifts of cuspidal Poincaré series in Sk(Γ₀(N)) to weight 2 - k harmonic weak Maass forms. This construction answers a question of Dyson by providing the general framework "explaining" Ramanujan's mock theta functions. As an...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-03, Vol.104 (10), p.3725-3731 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For 2 < k [set membership] [Formula: see text], we define lifts of cuspidal Poincaré series in Sk(Γ₀(N)) to weight 2 - k harmonic weak Maass forms. This construction answers a question of Dyson by providing the general framework "explaining" Ramanujan's mock theta functions. As an application, we show that the number of partitions of a positive integer n is the "trace" of singular moduli of a Maass form arising from the lift of a weight 4 cusp form corresponding to a Calabi-Yau threefold. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0611414104 |