Lifting cusp forms to Maass forms with an application to partitions

For 2 < k [set membership] [Formula: see text], we define lifts of cuspidal Poincaré series in Sk(Γ₀(N)) to weight 2 - k harmonic weak Maass forms. This construction answers a question of Dyson by providing the general framework "explaining" Ramanujan's mock theta functions. As an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-03, Vol.104 (10), p.3725-3731
Hauptverfasser: Bringmann, Kathrin, Ono, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For 2 < k [set membership] [Formula: see text], we define lifts of cuspidal Poincaré series in Sk(Γ₀(N)) to weight 2 - k harmonic weak Maass forms. This construction answers a question of Dyson by providing the general framework "explaining" Ramanujan's mock theta functions. As an application, we show that the number of partitions of a positive integer n is the "trace" of singular moduli of a Maass form arising from the lift of a weight 4 cusp form corresponding to a Calabi-Yau threefold.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0611414104